VEHICLE SAFETY COMPLIANCE TESTING
FOR
FMVSS 208, OCCUPANT CRASH PROTECTION
FMVSS 212, WINDSHIELD MOUNTING
FMVSS 219, WINSHIELD INTRUSION (PARTIAL)
FMVSS 301, FUEL SYSTEM INTEGRITY

DaimlerChrysler AG Stuttgart
2006 Mercedes E350 Passenger Car
NHTSA No.: C60503

PREPARED BY:
MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

Final Report Date: December 12, 2006

FINAL REPORT

PREPARED FOR:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
MAIL CODE: NVS-220
400 SEVENTH STREET, SW, ROOM 6115
WASHINGTON, D.C. 20590
This final test report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, in response to Contract Number DTNH22-03-D-11002.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers' names or products are mentioned it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared by: _____________________________
Jeff Lewandowski, Project Engineer

Date: December 12, 2006

Reviewed by: _____________________________
David Winkelbauer, Facility Director

Date: December 12, 2006

FINAL REPORT ACCEPTED BY OVSC:

Accepted By: _____________________________

Acceptance Date: _____________________________

December 12, 2006
Compliance tests were conducted on the subject 2006 Mercedes E350 in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208-13 for the determination of FMVSS 208 compliance. Test failures identified were as follows:

The driver side and passenger side sun visor warning labels are not permanently affixed. The labels are easily peeled off the visor. S4.5.1 (c) Each vehicle shall have a label permanently affixed to either side of the sun visor, at the manufacturer’s option, at each front outboard seating position that is equipped with an inflatable restraint. The gluing process was changed for the remainder of the 2006 model year and an additional heating process was scheduled to be added at the beginning of the 2007 model year.

17. Key Words
Frontal Impact
40 kmph Vehicle Safety Compliance Testing
FMVSS 208, “Occupant Crash Protection”
FMVSS 212, “Windshield Mounting”
FMVSS 219, (partial), “Windshield Zone Intrusion”
FMVSS 301, “Fuel System Integrity”

18. Distribution Statement
Copies of this report are available from the following:
NHTSA Technical Information Services (TIS), Mail Code: NPO-230
400 Seventh Street, S.W., Room 5108
Washington, D.C. 20590
Tel. No.: (202) 366-4946
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Purpose of Compliance Test</td>
<td>1</td>
</tr>
<tr>
<td>2 Tests Performed</td>
<td>2</td>
</tr>
<tr>
<td>3 Injury Result Summary</td>
<td>4</td>
</tr>
<tr>
<td>4 Discussion of Test (if applicable)</td>
<td>8</td>
</tr>
<tr>
<td>5 Test Data Sheets</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Sheet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 COTR Vehicle Work Order</td>
<td>10</td>
</tr>
<tr>
<td>2 Report of Vehicle Condition</td>
<td>14</td>
</tr>
<tr>
<td>3 Certification Label and Tire Placard Information</td>
<td>16</td>
</tr>
<tr>
<td>4 Rear Outboard Seating Position Seat Belts</td>
<td>17</td>
</tr>
<tr>
<td>5 Air Bag Labels</td>
<td>18</td>
</tr>
<tr>
<td>6 Readiness Indicator</td>
<td>30</td>
</tr>
<tr>
<td>7 Passenger Air Bag Manual Cut-Off Device</td>
<td>31</td>
</tr>
<tr>
<td>8 Lap Belt Lockability</td>
<td>34</td>
</tr>
<tr>
<td>9 Seat Belt Warning System</td>
<td>46</td>
</tr>
<tr>
<td>10 Belt Contact Force</td>
<td>48</td>
</tr>
<tr>
<td>11 Latch Plate Access</td>
<td>54</td>
</tr>
<tr>
<td>12 Seat Belt Retraction</td>
<td>56</td>
</tr>
<tr>
<td>13 Seat Belt Guides and Hardware</td>
<td>58</td>
</tr>
<tr>
<td>14 Marking of Reference Points for Various Test Positions & Points</td>
<td>64</td>
</tr>
<tr>
<td>16 Air Bag Suppression Telltale</td>
<td>73</td>
</tr>
<tr>
<td>17 Suppression Test Using 12-Month CRABI Dummy</td>
<td>74</td>
</tr>
<tr>
<td>18 Suppression Test Using Newborn Infant Dummy</td>
<td>81</td>
</tr>
<tr>
<td>Summary of Low Risk Deployment Using an Unbelted 3-Year-Old Dummy (S22.4) Position 1-Chest on IP</td>
<td>82</td>
</tr>
<tr>
<td>Summary of Low Risk Deployment Using an Unbelted 3-Year-Old Dummy (S22.4) Position 2-Head on IP</td>
<td>83</td>
</tr>
<tr>
<td>Summary of Low Risk Deployment Using an Unbelted 6-Year-Old Dummy (S24.4) Position 1-Chest on IP</td>
<td>84</td>
</tr>
<tr>
<td>Summary of Low Risk Deployment Using an Unbelted 6-Year-Old Dummy (S24.2) Position 2-Chest on IP</td>
<td>85</td>
</tr>
<tr>
<td>Summary of Low Risk Deployment Using an Unbelted 5th% Dummy Position 1</td>
<td>86</td>
</tr>
<tr>
<td>Summary of Low Risk Deployment Using an Unbelted 5th% Dummy Position 2</td>
<td>87</td>
</tr>
<tr>
<td>32 Vehicle Weight, Fuel Tank, and Attitude Data</td>
<td>88</td>
</tr>
<tr>
<td>33 Vehicle Accelerometer Locations and Measurements</td>
<td>92</td>
</tr>
<tr>
<td>34 Photographic Targets</td>
<td>95</td>
</tr>
<tr>
<td>Data Sheet</td>
<td>Page No</td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
</tr>
<tr>
<td>35 Camera Locations</td>
<td>101</td>
</tr>
<tr>
<td>36 Dummy Positioning</td>
<td>103</td>
</tr>
<tr>
<td>37 Dummy Measurements</td>
<td>115</td>
</tr>
<tr>
<td>38 Crash Test</td>
<td>118</td>
</tr>
<tr>
<td>40 Accident Investigation Measurements</td>
<td>120</td>
</tr>
<tr>
<td>41 Windshield Mounting (FMVSS 212)</td>
<td>122</td>
</tr>
<tr>
<td>42 Windshield Zone Intrusion (FMVSS 219)</td>
<td>124</td>
</tr>
<tr>
<td>43 Fuel System Integrity (FMVSS 301)</td>
<td>126</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Crash Test Data</td>
</tr>
<tr>
<td>B</td>
<td>Low Risk Test Data</td>
</tr>
<tr>
<td>C</td>
<td>Crash Test Photographs</td>
</tr>
<tr>
<td>D</td>
<td>Low Risk Photographs</td>
</tr>
<tr>
<td>E</td>
<td>Suppression Photographs</td>
</tr>
<tr>
<td>F</td>
<td>Instrumentation Calibration</td>
</tr>
<tr>
<td>G</td>
<td>Notice of Test Failure (If Applicable)</td>
</tr>
</tbody>
</table>
SECTION 1
PURPOSE OF COMPLIANCE TEST

The tests performed are part of a program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No. DTNH22-03-D-11002. The purpose of this test was to determine whether the subject vehicle, a 2006 Mercedes E350, NHTSA No. C60503, meets certain performance requirements of FMVSS 208, "Occupant Crash Protection"; FMVSS 212, "Windshield Mounting"; FMVSS 219, "Windshield Zone Intrusion"; and FMVSS 301, "Fuel System Integrity". The compliance test was conducted in accordance with OVSC Laboratory Test Procedure No. TP208-13 dated July 27, 2005.
SECTION 2
TESTS PERFORMED

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
NHTSA No.: C60503
Test Dates: 10/3/05 - 7/18/06

The following checked items indicate the tests that were performed:

1. Rear outboard seating position seat belts (S4.1.1.2(b) & (S4.2.4)
2. Air bag labels (S4.5.1)
3. Readiness indicator (S4.5.2)
4. Passenger air bag manual cut-off device (S4.5.4)
5. Lap belt lockability (S7.1.1.5)
6. Seat belt warning system (S7.3)
7. Seat belt contact force (S7.4.4)
8. Seat belt latch plate access (S7.4.4)
9. Seat belt retraction (S7.4.5)
10. Seat belt guides and hardware (S7.4.6)
11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R)
12. Suppression tests with newborn infant (Part 572, Subpart K)
13. Suppression tests with 3-year-old dummy (Part 572, Subpart P)
14. Suppression tests with 6-year-old dummy (Part 572, Subpart N)
15. Test of reactivation of the passenger air bag system with an unbelted 5th percentile female dummy
16. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R)
17. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P)
18. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N)
19. Low risk deployment test with 5th female dummy (Part 572, Subpart O)
20. Impact Tests
 Frontal Oblique
 - Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a) (1) or S5.1.2(b))
 Frontal 0°
 - Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
 - Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
 - Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a) (1))
 - Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 50th male dummy passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
| X | Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b)) |
| X | Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b)) |
| X | 40% Offset 0° Belted 5th male dummy driver and passenger (0 to 40 kmph) (S18.1) |
| 21. | Sled Test: unbelted 50th male dummy driver and passenger (S13) |
| 22. | FMVSS 204 Indicant Test |
| X | FMVSS 212 Indicant Test |
| X | FMVSS 219 Indicant Test |
| X | FMVSS 301 Frontal Indicant Test |

For the crash tests, the vehicle was instrumented with 8 accelerometers. The accelerometer data from the vehicle and dummies were sampled at 10,000 samples per second and processed as specified in SAE J211/1 MAR95 and FMVSS 208, S4.13.

The dynamic tests were recorded using high-speed film and high-speed digital video.

The vehicle does not appear to meet all of the performance requirements to which it was tested: The driver side and passenger side sun visor warning labels are not permanently affixed. The labels are easily peeled off the visor. S4.5.1 (c) Each vehicle shall have a label permanently affixed to either side of the sun visor, at the manufacturer’s option, at each front outboard seating position that is equipped with an inflatable restraint. The gluing process was changed for the remainder of the 2006 model year and an additional heating process was scheduled to be added at the beginning of the 2007 model year.
SECTION 3
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
NHTSA No.: C60503
Test Dates: 2/15/06 & 3/29/06

5th Percentile Female Low Risk Deployments

5th Percentile Female SN 081 Position 1 (Chin On Module) 2-15-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>7</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>17.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>45.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>318.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>55.7</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>564</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>116</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>11</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>8</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>141</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>36</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms

5th Percentile Female SN 081 Position 2 (Chin On Rim) 3-29-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>9</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>16.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>80.0</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>296.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>55.7</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>488</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>80</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>24</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>16</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>84</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>44</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms
3-Year-Old Low Risk Deployments

3-Year-Old SN 032 Position 1 (Chest On Instrument Panel) 2-15-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>No Valid Data</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms. The data is not reported because of noise caused by a dummy grounding problem.

3-Year-Old SN 032 Position 2 (Head On Instrument Panel) 6-7-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>247</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>47.7</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.1</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>20.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>380</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>186</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>19</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>0</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms.
SECTION 3
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2006 Mercedes E350
NHTSA No.: C60503
Test Program: FMVSS 208 Compliance
Test Dates: 3/29/06 & 5/10/06

6-Year-Old Low Risk Deployments

6-Year-Old SN 155 Position 1 (Chest On Instrument Panel) 3-29-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>12</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>98.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>1.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>407</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>29</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>12</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>4</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms

6-Year-Old SN 155 Position 2 (Head On Instrument Panel) 5-10-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>474</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>32.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.2</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>12.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>558</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>332</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Second stage fire time of 200 ms; Injuries calculated on 0 ms to 100 ms
SECTION 3
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
NHTSA No.: C60503
Test Dates: 10/3/05 - 7/18/06

40 kmph Frontal Crash

Impact Angle: Zero degrees
Belted Dummies: ___Yes _X No
Speed Range: ___ 0 to 40 kmph _X 32 to 40 kmph
___ 0 to 48 kmph ___ 0 to 56 kmph
Test Speed: 39.8 kmph
Test Weight: 1946.8 kg
Driver Dummy: _X 5th female ___ 50th male
Passenger Dummy: _X 5th female ___ 50th male

5th Percentile Female Frontal Crash Test
Vehicles certified to S16.1(a), S16.1(b), or S18.1

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>53</td>
<td>28</td>
</tr>
<tr>
<td>Npe</td>
<td>1.0</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>Nff</td>
<td>1.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Nce</td>
<td>1.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Ncf</td>
<td>1.0</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2620 N</td>
<td>812</td>
<td>261</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>75</td>
<td>530</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>39</td>
<td>28</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>2407</td>
<td>3926</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>3969</td>
<td>4060</td>
</tr>
</tbody>
</table>

* The right femur measure reported occurred at the same time as the maximum left femur injury measure. In addition, data was collected for another 20 ms before being cut off and the plot of the data has the normal shape. Thus the right femur injury measure is thought to be valid.
SECTION 4
DISCUSSION OF TESTS

Test Vehicle: 2006 Mercedes E350
NHTSA No.: C60503
Test Program: FMVSS 208 Compliance
Test Dates: 10/3/05 - 7/18/06

The driver and passenger side sun visor air bag warning labels are not permanently affixed to the sun visor. The labels are easily peeled off of the visor: S4.5.1 (c) Each vehicle shall have a label permanently affixed to either side of the sun visor, at the manufacturer’s option, at each front outboard seating position that is equipped with an inflatable restraint. The gluing process was changed for the remainder of the 2006 model year and an additional heating process was scheduled to be added at the beginning of the 2007 model year.

A blanket and visor were not used in the suppression testing because they did not affect the sensing system used on the vehicle.

There was no valid data during the 3YO P1 Low Risk Deployment conducted on 2-15-06 due to a dummy grounding problem. The test plots are included in Appendix B for information purposes ONLY.

There was no valid data after 84 msec on the passenger right femur during the frontal impact crash test. The right femur measure reported occurred at the same time as the maximum left femur injury measure. In addition, data was collected for another 20 ms before being cut off and the plot of the data has the normal shape. Thus the right femur injury measure is thought to be valid.

There was no valid data after 50 msec on the Instrument Panel (X) accelerometer during the frontal impact crash test.
<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
<th>NHTSA No.:</th>
<th>C60503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Dates:</td>
<td>10/3/06 - 7/18/06</td>
</tr>
</tbody>
</table>
DATA SHEET 1
COTR VEHICLE WORK ORDER

Test Vehicle: 2006 Mercedes E350
NHTSA No.: C60503
Test Program: FMVSS 208 Compliance
Test Dates: 10/3/05 - 7/18/06
COTR Signature: Charles R. Case

Test to be performed for this vehicle are checked below:

- 1. Rear Outboard Seating Position Seat Belts (S4.1.2(b)) & (S4.2.4)
- 2. Air Bag Labels (S4.5.1)
- 3. Readiness Indicator (S4.5.2)
- 4. Passenger Air Bag Manual Cut-off Device (S4.5.4)
- 5. Lap Belt Lockability (S7.1.1.5)
- 6. Seat Belt Warning System (S7.3)
- 7. Seat Belt Contact Force (S7.4.4)
- 8. Seat Belt Latch Plate Access (S7.4.5)
- 9. Seat Belt Retraction (S7.4.5)
- 10. Seat Belt Guides and Hardware (S7.4.6)
- 11. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R) using the following indicated child restraints.

Section B

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Handle with Care</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Assura 4553</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Avanta SE 41530</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Smart Fit 4543</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Arriva 02727</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Opus 35 02603</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Discovery Adjust Right 212</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo First Choice 204</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo On My Way Position Right V 282</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Graco Infant 8457</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

Section C

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roundabout 161</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Encore 4612</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Touriva 02519</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Medallion 254</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

12. Suppression tests with newborn infant (Part 572, Subpart K) using the following indicated child restraints.

Section A

<table>
<thead>
<tr>
<th>Child Restraint</th>
<th>Position 1</th>
<th>Position 2</th>
<th>Position 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosco Dream Ride 02-719</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

13. Suppression tests with 3-year-old dummy (Part 572, Subpart P) using the following indicated child restraints where a child restraint is required.
14. Suppression tests with representative 3-year-old child using the following indicated child restraints where a child restraint is required. (Appendix H, Data Sheet 16H and 17H)

Section C
- Britax Roundabout 161
- Century Encore 4612
- Century STE 1000 4416
- Cosco Olympian 02803
- Cosco Touriva 02519
- Evenflo Horizon V 425
- Evenflo Medallion 254

Section D
- Britax Roadster 9004
- Century Next Step 4920
- Cosco High Back Booster 02-442
- Evenflo Right Fit 245

15. Suppression tests with 3-year-old dummy (Part 572, Subpart P) in the following Forward, Middle, and Rearward seat track positions
- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

16. Suppression tests with representative 3-year-old child in the following positions
- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat with back not against seat back (S22.2.2.3)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Standing on seat, facing forward (S22.2.2.5)
- Kneeling on seat facing forward (S22.2.2.6)
- Kneeling on seat facing rearward (S22.2.2.7)
- Lying on seat (S22.2.2.8)

17. Suppression tests with 6-year-old dummy (Part 572, Subpart N) using the following indicated child restraints where a child restraint is required.
18. Suppression tests with representative 6-year-old child using the following indicated child restraints where a child restraint is required.

Section D

- Britax Roadster 9004
- Century Next Step 4920
- Cosco High Back Booster 02-442
- Evenflo Right Fit 245

Full Rearward | Mid Position | Full Forward

19. Suppression tests with 6-year-old dummy (Part 572, Subpart N) in the following Forward, Middle, and Rearward seat track positions

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Sitting back in the seat and leaning on the right front passenger door (S24.2.3)

20. Suppression tests with representative 6-year-old child in the following positions

- Sitting on seat with back against seat back (S22.2.2.1)
- Sitting on seat with back against reclined seat back (S22.2.2.2)
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
- Sitting back in the seat and leaning on the right front passenger door (S24.2.3)

21. Test of Reactivation of the Passenger Air Bag System with an Unbelted 5th percentile female dummy (S20.3, 22.3, S24.3). Perform this test after the following suppression tests: After each restraint.

22. Test of Reactivation of the passenger air bag system with a representative 5th percentile female (S20.3, 22.3, S24.3). Perform this test after the following suppression tests:

23. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R) using the following indicated child restraints.

Section B

- Britax Handle with Care 191
- Century Assura 4553
- Century Avanta SE 41530
- Century Smart Fit 4543
- Cosco Arriva 02727
- Cosco Opus 35 02603
- Evenflo Discovery Adjust Right 212
- Evenflo First Choice 204
- Evenflo On My Way Position Right V 282
- Graco Infant 8457

Full Rearward | Mid Position | Full Forward

Section C

- Britax Roundabout 161
- Century Encore 4612
- Century STE 1000 4416
- Cosco Olympian 02803
- Cosco Touriva 02519
- Evenflo Horizon V 425
- Evenflo Medallion 254

Full Rearward | Mid Position | Full Forward
24. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P) in the following positions
 - Position 1
 - Position 2

25. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N) in the following positions
 - Position 1
 - Position 2

26. Low risk deployment test with 5th percentile female dummy (Part 572, Subpart O) in the following positions
 - Position 1
 - Position 2

27. Impact Tests
 - Frontal Oblique – Test Speed:
 - Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a) (1) or S5.1.2(b))

 - Frontal 0° - Test Speed: 39.8 kmph
 - Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
 - Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
 - Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.2(a) (1))
 - Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 50th male dummy passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Belted 5th female dummy driver (32 to 40 kmph) (S16.1(b))
 - Belted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))

 - 40% Offset 0° Belted 5th male dummy driver and passenger (0 to 40 kmph) (S18.1)
 - Test Speed:

28. Sled Test: Unbelted 50th male dummy driver and passenger (S13)

29. FMVSS 204 Indicant Test

30. FMVSS 212 Indicant Test

31. FMVSS 219 Indicant Test

32. FMVSS 301 Frontal Indicant Test
DATA SHEET 2
REPORT OF VEHICLE CONDITION

Test Vehicle: 2006 Mercedes E350
NHTSA No.: C60503
Test Program: FMVSS 208 Compliance
Test Dates: 10/3/05 - 7/18/06

CONTRACT NO. DTNH22-03-D-11002 Date: 7/27/05
FROM (Lab and rep name): MGA Research Corporation
TO: NHTSA, OVSC (NVS-220)

PURPOSE: (X) Initial Receipt () Received via Transfer () Present vehicle condition

MODEL YEAR/MAKE/MODEL/BODY STYLE: 2006 Mercedes E350 Sedan
MANUFACTURE DATE: 06/05
NHTSA NO. C60503
GVWR: 2195 kg (4840 lbs)
BODY COLOR: Silver
GAWR (Fr): 1000 kg (2205 lbs)
VIN: WDBUF56J76A841487
GAWR (Rr): 1195 kg (2635 lbs)

ODOMETER READINGS: ARRIVAL (miles): 100 DATE: 9/27/05
COMPLETION (miles): 173 DATE: 7/18/06
PURCHASE PRICE: ($) 54,465
DEALER’S NAME: Zimbrick European, 320 W Beltline Hwy, Madison, WI 53713

A. All options listed on window sticker are present on the test vehicle:
 X Yes ___No
B. Tires and wheel rims are new and the same as listed: _X_ Yes ___No
C. There are no dents or other interior or exterior flaws: _X_ Yes ___No
D. The vehicle has been properly prepared and is in running condition:
 X Yes ___No
E. Keyless remote is available and working: _X_ Yes ___No
F. The glove box contains an owner’s manual, warranty document, consumer information,
 and extra set of keys: _X_ Yes ___No
G. Proper fuel filler cap is supplied on the test vehicle: _X_ Yes ___No
H. Using permanent marker, identify vehicle with NHTSA number and FMVSS test type(s)
 on roof line above driver door or for school buses, place a placard with NHTSA number
 inside the windshield and to the exterior front and rear side of bus:
 X Yes ___No
I. Place vehicle in storage area: _X_ Yes ___No
J. Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc. to
 confirm that each system is complete and functional per the manufacturer’s
 specifications. Any damage, misadjustment, or other unusual condition that could
 influence the test program or test results shall be recorded. Report any abnormal
 condition to the NHTSA COTR before beginning any test:
 X Vehicle OK ___Conditions reported below
REPORT OF VEHICLE CONDITION AT THE COMPLETION OF TESTING

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: FMVSS 208, 212, 219, 301

VEHICLE: 2006 Mercedes E350
NHTSA NO. C60503

REMARKS:

Equipment that is no longer on the test vehicle as noted on previous page:
Spare tire, jack and tools, rear seat cushion, and trunk interior

Explanation for equipment removal:
Components removed for instrumentation installation and to meet target weight.

Test Vehicle Condition:
25 mph frontal impact damage- front suspension & structure damaged, hood & front quarter panels damaged, radiator damaged, air bags & pretensioners deployed, Stoddard in fuel system

RECORDED BY: Jeff Lewandowski DATE: 7/27/2006
APPROVED BY: David Winkelbauer DATE: 7/27/2006

#

RELEASE OF TEST VEHICLE

The vehicle described above is released from MGA to be delivered to:

Date: Time: Odometer:

Lab Rep’s Signature:
Title:
Carrier/Customer Rep:
Date:
DATA SHEET 3
CERTIFICATION LABEL AND TIRE PLACARD INFORMATION

Test Vehicle: 2006 Mercedes E350 NHTSA No.: C60503
Test Program: FMVSS 208 Compliance Test Dates: 10/3/05 - 7/18/06
Test Technician: Nick Kosinski

<table>
<thead>
<tr>
<th>Certification Label</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer:</td>
<td>DaimlerChrysler AG Stuttgart</td>
</tr>
<tr>
<td>Date of Manufacture:</td>
<td>06/05</td>
</tr>
<tr>
<td>VIN:</td>
<td>WDBUF56J76A841487</td>
</tr>
<tr>
<td>Vehicle Certified As (Pass. Car/MPV/Truck/Bus):</td>
<td>Passenger Car</td>
</tr>
<tr>
<td>Front Axle GVWR:</td>
<td>1000 kg (2205 lbs)</td>
</tr>
<tr>
<td>Rear Axle GVWR:</td>
<td>1195 kg (2635 lbs)</td>
</tr>
<tr>
<td>Total GVWR:</td>
<td>2195 kg (4840 lbs)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tire Placard</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Not applicable, vehicle is not a passenger car and does not have a tire placard.</td>
<td>Passenger Car</td>
</tr>
<tr>
<td>This is not a passenger car, but all or part of this information is still contained on a vehicle label and is reported here.</td>
<td>Passenger Car</td>
</tr>
<tr>
<td>Vehicle Capacity Weight:</td>
<td>460 kg (1010 lbs)</td>
</tr>
<tr>
<td>Designated Seating Capacity Front:</td>
<td>2</td>
</tr>
<tr>
<td>Designated Seating Capacity Rear:</td>
<td>3</td>
</tr>
<tr>
<td>Total Designated Seating Capacity:</td>
<td>5</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Front:</td>
<td>196 kpa (28 psi)</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Rear:</td>
<td>210 kpa (30 psi)</td>
</tr>
<tr>
<td>Recommended Tire Size:</td>
<td>P245/45R17</td>
</tr>
</tbody>
</table>

Signature: Nick Kosinski
Date: 7/18/06
DATA SHEET 4

REAR OUTBOARD SEATING POSITION SEAT BELTS

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
<th>NHTSA No.:</th>
<th>C60503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>10/3/05</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Nick Kosinski</td>
<td>NHTSA No.:</td>
<td>C60503</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Do all rear outboard seating positions have Type 2 seat belts?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a Type 2 seat belt was not installed.

REMARKS:

Signature: Nick Kosinski

Date: 10/3/05
DATA SHEET 5
AIR BAG LABELS (S4.5.1)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

1. Air bag maintenance label and owner’s manual instructions: (S4.5.1(a))
 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 □ Yes, go to 1.2
 X No – go to 2
 1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 □ Yes – Pass
 □ No – Fail
 1.3 Does the label contain one of the following?
 □ Yes – Pass
 □ No – Fail
 Check applicable schedule:
 _ Schedule on label specifies month and year (Record date_______)
 _ Schedule on label specified vehicle mileage (Record mileage_______)
 _ Schedule on label specifies interval measured from date on certification label
 (Record interval_______)
 1.4 Is the label permanently affixed within the passenger compartment such that it cannot
 be removed without destroying or defacing the label or the sunvisor? (3/19/01
 legal interpretation to Todd Mitchell)
 □ Yes – Pass
 □ No – Fail
 1.5 Is the label lettered in English?
 □ Yes – Pass
 □ No – Fail
 1.6 Is the label in block capitals and numerals?
 □ Yes – Pass
 □ No – Fail
 1.7 Are the letters and numerals at least 3/32 inches high?
 □ Yes – Pass
 □ No – Fail
 1.8 Does the owner’s manual set forth the recommended schedule for maintenance or
 replacement?
 2. Does the owner’s manual: (S4.5.1(f))
 2.1 Include a description of the vehicle’s air bag system in an easily understandable
 format?
 X Yes – Pass
 □ No – Fail
 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder
 belt at the front outboard seating position?
 X Yes – Pass
 □ No – Fail
2.3 Include a statement that the air bag is a supplement restraint at the front outboard seating position?
 - Yes – Pass
 - No – Fail

2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash?
 - Yes – Pass
 - No – Fail

2.5 Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to ensure maximum safety protection for those occupants?
 - Yes – Pass
 - No – Fail

2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate?
 - Yes – Pass
 - No – Fail

2.7 Is the vehicle certified to meet the requirements of S14.5, S15, S17, S19, S21, S23, and S25? (Obtain answer from COTR) (S4.5.1(f)(2))
 - Yes – (Go to 2.7.1)
 - No – (Go to 3.)

2.7.1 Explain the proper functioning of the advanced air bag system? (S4.5.1(f)(2))
 - Yes – Pass
 - No – Fail

2.7.2 Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2))
 - Yes – Pass
 - No – Fail

2.7.3 Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i))
 - Yes – Pass
 - No – Fail

2.7.4 Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1(f)(2)(ii))
 - Yes – Pass
 - No – Fail

2.7.5 Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii))
 - Yes – Pass
 - No – Fail

2.7.6 Is the vehicle certified to the requirements of S19.2, S21.2, or 23.2 (automatic suppression)?
 - Yes, continue with 2.7.6
 - No, go to 2.7.7

2.7.6.1 Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone? (S4.5.1(f)(2)(iv))
 - Yes – Pass
 - No – Fail
2.7.6.2 Discuss the telltale light, specifying its location in the vehicle and explaining when the light is illuminated?

Yes – Pass
No – Fail

2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))

Yes – Pass
No – Fail

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))

Yes – Pass
No – Fail

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(vii))

Yes – Pass
No – Fail

3. Sun Visor Air Bag Warning Label (S4.5.1(b)) Check only one of the following:

The vehicle is not certified to meet the requirements of S19, S21, and S23 (Obtain answer from COTR) (S4.5.1(b)(1)) Go to 3.1 and skip 3.2

The vehicle is certified to meet the requirements of S19, S21, and S23 on 9/1/03 or later. (Obtain answer from COTR) (S4.5.1(b)(3)) Go to 3.2 and skip 3.1

3.1 Vehicles not certified to meet the requirements of S19, S21, and S23.

3.1.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or sun visor? (S4.5.1(b)(1)) (3/19/01 legal interpretation to Todd Mitchell)

Driver Side, Yes – Pass
Driver Side, No – Fail
Passenger Side, Yes – Pass
Passenger Side, No – Fail
3.1.2 Does the label conform in content to the label shown in either Figure 6A or 6B (Figure 6b is for vehicles with passenger air bag on-off switches), as appropriate, at each front outboard seating position? (S4.5.1(b)(1)) (Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” (S4.5.1(b)(1)(iv))

![Figure 6a. Sun Visor Label Visible When Visor is in Down Position.](image)

![Figure 6b. Sun Visor Label Visible When Visor is in Down Position.](image)

3.1.3 Is the label heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1(b)(1)(i))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.1.4 Is the message area white with black text? (S4.5.1(b)(1)(ii))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.1.5 Is the message area at least 30 cm²? (S4.5.1(b)(1)(ii))

The message area consists of the total label area minus the yellow heading area and the pictogram. The pictogram is enclosed on the left side and bottom by the edge of the label and on the top by line that borders the yellow heading area. The right side of the pictogram is defined by a vertical line midway between the rightmost edge of the pictogram and the left most edge of the text, including any bullets. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

Driver Side: Length______, Width________
Passenger Side: Length______, Width________
Actual message area __________ cm²

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.1.6 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(b)(2)(iii))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.1.7 Is the pictogram at least 30 mm in diameter? (S4.5.1(b)(2)(iii))

Actual diameter__________mm

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.2 Vehicles certified to meet the requirements of S19, S21, and S23 on 9/1/03 and later. (S4.5.1(b)(3))

3.2.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(3)) (3/19/01 legal interpretation to Todd Mitchell)

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.2.2 Does the label conform in content to the label shown in Figure 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” (S4.5.1(b)(3)(iv)) Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement “Never put a rear-facing child seat in the front.”(S4.5.1(b)(3)(v))

![Figure 8. Sun Visor Label Visible when Visor is in Down Position.](image1)

![Figure 11. Sun Visor Label Visible when Visor is in Down Position.](image2)

- **X** Driver Side, Yes – Pass
- Driver Side, No – Fail
- **X** Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.2.3 Is the label heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1(b)(3)(i))

- **X** Driver Side, Yes – Pass
- Driver Side, No – Fail
- **X** Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.2.4 Is the message area white with black text? (S4.5.1(b)(3)(ii))

- **X** Driver Side, Yes – Pass
- Driver Side, No – Fail
- **X** Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.2.5 Is the message area at least 30 cm²? (S4.5.1(b)(3)(ii)) The message area consists of the total label area minus the yellow heading area and the pictogram. The pictogram is enclosed on the left side and bottom by the edge of the label. The top edge of the pictogram area is defined by a horizontal line midway between the uppermost edge of the pictogram and the lowermost edge of the text. The right side of the pictogram is defined by a vertical line midway between the rightmost edge of the pictogram and the left most edge of the text, including any bullets. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

Driver Side: Length 8.0 cm, Width 4.4 cm
Passenger Side: Length 8.0 cm, Width 4.4 cm
Actual message area 35.2 cm²
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.2.6 Is the pictogram black on a white background? (S4.5.1(b)(3)(iii))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.2.7 Is the pictogram at least 30 mm (1.2 inches) in length? (S4.5.1(b)(3)(iii))
Driver Side: Length 45 mm
Passenger Side: Length 45 mm
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.3 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover-warning label? (S4.5.1(b)(5)(i))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.4 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover-warning label? (S4.5.1(b)(5)(ii))
- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.5 Does the driver side visor contain a rollover-warning label on the same side of the visor as the air bag warning label?

Yes, go to 3.6.1

No, go to 4 (skipping 3.5.1 through 3.5.3)

3.5.1 Are both the rollover-warning label and the air bag warning label surrounded by a continuous solid-lined border?

Yes, go to 3.5.2 and skip 3.5.3

No, go to 3.5.3 and skip 3.5.2

3.5.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (575.105 (d)(1)(iv)(B))

actual distance

3.5.3 Is the shortest distance from any of the lettering or graphics on the rollover-warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (575.105 (d)(1)(iv)(A))

actual distance

Yes-Pass No-FAIL

4. Air Bag Alert Label (S4.5.1(c) (A "Rollover Warning Label" or "Rollover Alert Label" may be on the same side of the driver's sun visor as the "Air Bag Alert Label.") 575.105(d))

4.1 Is the sun visor warning label visible when the sun visor is in the stowed position?

If yes for driver and passenger, go to 5.

Driver Side, Yes

Driver Side, No

Passenger Side, Yes

Passenger Side, No

4.2 Is the air bag alert label permanently affixed (including permanent marking on the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(c)) (3/19/01 legal interpretation to Todd Mitchell)

Driver Side, Yes – Pass

Driver Side, No – Fail

Passenger Side, Yes – Pass

Passenger Side, No – Fail

4.3 Is the air bag alert label visible when the visor is in the stowed position? (S4.5.1(c))

Driver Side, Yes – Pass

Driver Side, No – Fail

Passenger Side, Yes – Pass

Passenger Side, No – Fail
4.4 Does the label conform in content to the label shown in Figure 6C? (S4.5.1(c))

![Label Image]

Figure 6c. Sun Visor Label Visible When Visor is in Up Position.

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.5 Is the message area black with yellow text? (S4.5.1(c)(1))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1)) The message area consists of the black part of the label.

Driver Side: Length 9.2 cm, Width 2.3 cm
Passenger Side: Length 9.2 cm, Width 2.3 cm
Actual message area 21.1 cm²

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2))

Driver Side Diameter 20 mm
Passenger Side Diameter 20 mm

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
5. Label on the Dashboard

5.1 Is the vehicle certified to meet the requirements of S19, S21, and S23? (Obtain answer from COTR) (S4.5.1(e)(3))

- Yes, go to 5.1.1 and skip 5.2
- No, go to 5.2, skipping 5.1.1 through 5.1.6

5.1.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(3))

- Yes – Pass
- No – Fail

5.1.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(3))

- Yes – Pass
- No – Fail

5.1.3 Does the label conform in content to the label shown in Figure 12? (S4.5.1(e)(3))

Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” Vehicles without back seats or too small to accommodate a rear-facing child restraint consistent with S4.5.4.1 as determined in DATA SHEET 7 may omit the statement “Never put a rear-facing child seat in the front.” (S4.5.1(e)(3)(iii))

- Yes – Pass
- No – Fail

This Vehicle is Equipped with Advanced Air Bags

Even with Advanced Air Bags
Children can be killed or seriously injured by the air bag.
The back seat is the safest place for children.
Never put a rear-facing child seat in the front.
Always use seat belts and child restraints.
See owner’s manual for more information about air bags.

Figure 12. Removable Label on Dash.

5.1.4 Is the heading area yellow with black text? (S4.5.1(e)(3)(i))

- Yes – Pass
- No – Fail

5.1.5 Is the message white with black text? (S4.5.1(e)(3)(ii))

- Yes – Pass
- No – Fail
5.1.6 Is the message area at least 30 cm²? (S4.5.1(e)(3)(ii)) The message area consists of the total label area minus the yellow heading area. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

- Length 9.5 cm
- Width 3.8 cm
- Actual message area 36.1 cm²

[Answer]

Yes – Pass

5.2 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(1))

- Yes – Pass
- No - Fail

5.2.1 Is the label clearly visible from all front seating positions? (S4.5.1(e)(1))

- Yes – Pass
- No - Fail

5.2.2 Does the label conform in content to the label shown in Figure 7? (S4.5.1(e)(1)(iii)) Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” (S4.5.1(e)(1)(iii))

- Yes – Pass
- No - Fail

5.2.3 Is the heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1(e)(1)(i))

- Yes – Pass
- No - Fail

5.2.4 Is the message white with black text? (S4.5.1(e)(1)(ii))

- Yes – Pass
- No - Fail

5.2.5 Is the message area at least 30 cm²? (S4.5.1(e)(1)(ii)) The message area consists of the total label area minus the yellow heading area. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

- Length _______, Width _______
- Actual message area ________ cm²

[Answer]

Yes – Pass

No - Fail
REMARKS:

I certify that I have read and performed each instruction.

Signature: __________________________

Date: 10/3/05
DATA SHEET 6
FMVSS 208 READINESS INDICATOR (S4.5.2)

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
<th>NHTSA No.:</th>
<th>C60503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>10/3/05</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Nick Kosinski</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Hennegerger on behalf of Breed)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>1. Is the system totally mechanical? If Yes, this data sheet is complete.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>2. Describe the location of the readiness indicator: Instrument Panel (lower right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>3. Is the readiness indicator clearly visible to the driver?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No - Fail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner’s manual?</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No - Fail</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>5. Does the vehicle have an on-off switch for the passenger air bag?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>If Yes, go to 6</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td>If No, this form is complete.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>6. Is the air bag readiness indicator off when the passenger air bag switch is in the off position?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No - Fail</td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 10/3/05
DATA SHEET 7
PASSENGER AIR BAG MANUAL CUT-OFF DEVICE (S4.5.4)

Test Vehicle: 2006 Mercedes E350 NHTSA No.: C60503
Test Program: FMVSS 208 Compliance Test Date: 10/3/05
Test Technician: Nick Kosinski

1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the right front outboard seating position?
 - Yes, go to 2
 - No, this sheet is complete

2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4.1(a))
 - Yes, go to 3
 - No, go to 4

3. Verification there is room for a child restraint in the rear seat behind the driver’s seat. (S4.5.4(b))
 - Using all the controls that affect the fore-aft movement of the seat, move the seat to the rearmost position. Mark this position.
 - N/A, the seat does not have fore-aft adjustment
 - Using all the controls that affect the fore-aft movement of the seat, move the seat to the foremost position. Mark this position.
 - N/A, the seat does not have fore-aft adjustment
 - Move the seat to the middle of the foremost and rearmost positions. (S8.1.2)
 - N/A, the seat does not have a fore-aft adjustment
 - If the driver’s seat height is adjustable, use all the controls that affect height to put it in the lowest position while maintaining the middle fore-aft position. (S8.1.2)
 - N/A, No seat height adjustment
 - Position the driver’s seat adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A, No lumbar adjustment
 - The driver’s seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1(b) and S8.1.3)
 - N/A, No seat back angle adjustment
 - Manufacturer’s design driver’s seat back angle ______________
 - Tested driver’s seat back angle ______________

3.7 Is the driver seat a bucket seat?
 - Yes, go to 3.7.1 and skip 3.7.2.
 - No, go to 3.7.2 and skip 3.7.1.

3.7.1 Bucket seats:
 - Locate and mark a vertical Plane B through the longitudinal centerline of the driver’s seat cushion. The longitudinal centerline of a bucket seat cushion is determined at SgRP. (S16.3.1.10) (S4.5.4.1(b)(1))
3.7.1.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion behind the driver’s seat. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the driver’s seat.

___ mm distance

less than 720 mm – Pass
more than 720 mm – **FAIL**
Go to 4

3.2 Bench seats (including split bench seats):

3.7.2.1 Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline. (S4.5.4.1(b)(2))

3.7.2.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the front seat.

___ mm distance

less than 720 mm – Pass
more than 720 mm – **FAIL**
Go to 4

4. Does the device turn the air bag on and off using the vehicle’s ignition key? (S4.5.4.2)

Yes – Pass
No – Fail

5. Is the on-off device separate from the ignition switch? (S4.5.4.2)

Yes – Pass
No – Fail

6. Is there a telltale light that comes on when the passenger air bag is turned off? (S4.5.4.2)

Yes – Pass
No – Fail

7. Telltale light (S4.5.4.3)

7.1 Is the light yellow? S4.5.4.3(a))

Yes – Pass
No – Fail

7.2 Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S4.5.4.3(b)) on the telltale?

Yes – Pass, go to 7.3
No – go to 7.2.2

7.2.1 within 25 mm of the telltale?

Measurement from the edge of the telltale light (mm):

Yes – Pass
No – Fail

7.3 Does the telltale remain illuminated while the air bag is turned off? (S4.5.4.3c)) (Leave the air bag off for 5 minutes.)

Yes – Pass
No – Fail
7.4 Is the telltale illuminated while the air bag is turned on? (S4.5.4.3(d))
Yes – Fail
No – Pass

7.5 Is the telltale combined with the air bag readiness indicator? (S4.5.4.3(e))
Yes – Fail
No – Pass

8. Owner’s Manual

8.1 Does the owner’s manual contain complete instructions on the operation of the on-off switch? (S4.5.4.4(a))
Yes – Pass
No – Fail

8.2 Does the owner’s manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (S4.5.4.4(b))
Infants: there is no back seat
the rear seat is too small to accommodate a child restraint
there is a medical condition that must be monitored constantly
Children aged 1 to 12:
there is no back seat
space is not always available in the rear seat
there is a medical condition that must be monitored constantly
Medical condition:
medical risk causes special risk for passenger
greater risk for harm than with the air bag on
Yes – Pass
No – Fail

8.3 Does the owner’s manual contain a warning about the safety consequences of using the on-off switch at other times?
Yes – Pass
No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 10/3/05
DATA SHEET 8

LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger
Vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
NHTSA No.: C60503
Test Date: 10/3/05

Complete one of these forms for **each** designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), **and** that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Front Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – no retractor is at this position</td>
<td></td>
</tr>
<tr>
<td>N/A – the retractor is an automatic locking retractor ONLY</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>1. Record test fore-aft seat position: FULL REAR (S7.1.1.5(c)(1)) (Any position is acceptable)</td>
</tr>
</tbody>
</table>
| X | 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 - Yes – Pass
 - No – Fail |
| X | 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 - Yes – Pass
 - No – Fail |
| X | 4. Place any adjustable seat belt anchorage in the lowest adjustment position. |
| X | 5. N/A The anchorage is not adjustable. |
| X | 6. Buckle the seat belt. (S7.1.1.5(c)(1)) |
| X | 7. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2)) |
| X | 8. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2)) |
| X | 8.1 Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 - Yes, go to 8.1
 - No, go to 9.
 - Yes – Pass
 - No – Fail |

Test Vehicle: 2006 Mercedes E350
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 Measured distance between A and B (inches): 60 ½ inch

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))
 Measured force application angle (Spec. 5-15 degrees): 10°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))
 Measured distance between A and B (inches): 24 ¼ inch

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))
 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 25 lbs./sec
 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 25 inches

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))
 Measured force application angle 10° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))
 Measured distance between A and B 21 ¼ inches
18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

- Record onset rate 25 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
- Measured distance between A and B 21 ½ inches (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

- 14 - 13 = 25 - 24 ½ = 1/2 inch
- 18 - 17 = 21 ½ - 21 ¼ = 1/4 inch

Yes – Pass
No – Fail

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

- 10 - 14 = 60 ½ - 25 = 35 ½ inch
- 10 - 18 = 60 ½ - 21 ½ = 39 inch

Yes – Pass
No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 10/3/05

Figure 5. - Webbing Tension Pull Device
DATA SHEET 8
LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle: 2006 Mercedes E350 NHTSA No.: C60503
Test Program: FMVSS 208 Compliance Test Date: 10/3/05
Test Technician: Nick Kosinski

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5, and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Left Rear Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – no retractor is at this position</td>
<td></td>
</tr>
<tr>
<td>N/A – the retractor is an automatic locking retractor ONLY</td>
<td></td>
</tr>
<tr>
<td>1. Record test fore-aft seat position: (S7.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td>Any position is acceptable</td>
<td></td>
</tr>
<tr>
<td>FIXED</td>
<td></td>
</tr>
<tr>
<td>2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5(a))</td>
<td></td>
</tr>
<tr>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5(a))</td>
<td></td>
</tr>
<tr>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>No – Fail</td>
<td></td>
</tr>
<tr>
<td>4. Place any adjustable seat belt anchorage in the lowest adjustment position.</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>N/A The anchorage is not adjustable.</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5. Buckle the seat belt. (S7.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Yes, go to 8.1</td>
<td></td>
</tr>
<tr>
<td>No, go to 9.</td>
<td></td>
</tr>
<tr>
<td>8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>No – Fail</td>
<td></td>
</tr>
</tbody>
</table>
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 61 ½ inch

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 10°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 26 inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 25 lbs/sec

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 27 1/8 inch

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle 10° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B 19 1/8 inch

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate 25 lbs/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

 Measured distance between A and B 19 ¾ inch (S7.1.1.5(c)(6))
19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both?
(S7.1.1.5(c)(7))
14-13 = \(27 \frac{1}{8} - 26 = 1 \frac{1}{8}\) inch
18-17 = \(19 \frac{3}{4} - 19 \frac{1}{8} = 5/8\) inch
\[\text{X} \quad \text{Yes – Pass}\]
\[\text{X} \quad \text{No – Fail}\]

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both?
(S7.1.1.5(c)(8))
10-14 = \(61 \frac{1}{2} - 27 \frac{1}{8} = 34 \frac{3}{8}\) inch
10-18 = \(61 \frac{1}{2} - 19 \frac{3}{4} = 41 \frac{3}{4}\) inch
\[\text{X} \quad \text{Yes – Pass}\]
\[\text{X} \quad \text{No – Fail}\]

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 10/3/05
DATA SHEET 8

LAP BELT LOCKABILITY
Passenger cars, trucks, buses, and multipurpose passenger
Vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
NHTSA No.: C60503
Test Date: 10/3/05

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Record test fore-aft seat position: NOT ADJUSTABLE (S7.1.1.5(c)(1)) (Any position is acceptable)
 X Yes – Pass
 No – Fail

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 X Yes – Pass
 No – Fail

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 X Yes – Pass
 No – Fail

4. Place any adjustable seat belt anchorage in the lowest adjustment position.
 X N/A The anchorage is not adjustable.

5. Buckle the seat belt. (S7.1.1.5(c)(1))

6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 X Yes, go to 8.1
 No, go to 9

8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 X Yes – Pass
 No – Fail
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 75 inches

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 12°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 26 ¼ inch

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 25 lbs/sec

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 27 inches

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle 12° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B 19 inches
18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 - Record onset rate 25 lbs/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 - Measured distance between A and B 20 inches (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

 - 14-13 = 27 - 26 ¼ = ¾ inch
 - 18-17 = 20 - 19 = 1 inch

 - Yes – Pass
 - No – Fail

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

 - 10-14 = 75 – 27 = 48 inches
 - 10-18 = 75 – 20 = 55 inches

 - Yes – Pass
 - No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 10/3/05

Figure 5: Webbing Tension Pull Device
DATA SHEET 8

LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
<th>NHTSA No.:</th>
<th>C60503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>10/3/05</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Nick Kosinski</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Right Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – no retractor is at this position</td>
<td></td>
</tr>
<tr>
<td>N/A – the retractor is an automatic locking retractor ONLY</td>
<td></td>
</tr>
<tr>
<td>1. Record test fore-aft seat position: FIXED (S7.1.1.5(c)(1)) (Any position is acceptable)</td>
<td></td>
</tr>
<tr>
<td>2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))</td>
<td></td>
</tr>
<tr>
<td>X Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>X No – Fail</td>
<td></td>
</tr>
<tr>
<td>3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))</td>
<td></td>
</tr>
<tr>
<td>X Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>X No – Fail</td>
<td></td>
</tr>
<tr>
<td>4. Place any adjustable seat belt anchorage in the lowest adjustment position.</td>
<td></td>
</tr>
<tr>
<td>X N/A The anchorage is not adjustable.</td>
<td></td>
</tr>
<tr>
<td>5. Buckle the seat belt. (S7.1.1.5(c)(1))</td>
<td></td>
</tr>
<tr>
<td>6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
<td></td>
</tr>
<tr>
<td>8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
<td></td>
</tr>
<tr>
<td>X Yes, go to 8.1</td>
<td></td>
</tr>
<tr>
<td>X No, go to 9.</td>
<td></td>
</tr>
<tr>
<td>8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))</td>
<td></td>
</tr>
<tr>
<td>X Yes – Pass</td>
<td></td>
</tr>
<tr>
<td>X No – Fail</td>
<td></td>
</tr>
</tbody>
</table>
9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

 Measured distance between A and B (inches): 62 ½ inches

11. Readjust the belt system so that the webbing between points A and B is at 1/2 the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle (Spec. 5-15 degrees): 10°

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B (inches): 25 inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate (lb/sec) (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5)): 25 lbs/sec

 Measured distance between A and B (inches) (S7.1.1.5(c)(6)): 26 inches

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle 10° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B 19 inches

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate 25 lbs/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

 Measured distance between A and B 19 ½ inches (S7.1.1.5(c)(6))
19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

14-13 = 26 - 25 = 1 inch

18-17 = 19 ½ - 19 = ½ inch

Yes – Pass
No – Fail

20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

10-14 = 62 ½ - 26 = 36 ½ inches

10-18 = 62 ½ - 19 ½ = 43 inches

Yes – Pass
No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 10/3/05

Figure 5. - Webbing Tension Pull Device
X 1. The occupant is in the driver’s seat.

X 2. The seat belt is in the stowed position.

X 3. The key is in the “on” or “start” position.

X 4. The time duration of the audible signal beginning with key “on” or “start” is
 Seconds: 6

X 5. The occupant is in the driver’s seat.

X 6. The seat belt is in the stowed position.

X 7. The key is in the “on” or “start” position.

X 8. The time duration of the warning light beginning with key “on” or “start” is
 Seconds: Stays On

X 9. The occupant is in the driver’s seat.

X 10. The seat belt is in the latched position and with at least 4 inches of belt webbing
 extended.

X 11. The key is in the “on” or “start” position.

X 12. The time duration of the warning light beginning with key “on” or “start” is
 Seconds: 0

X 13. Complete the following table with the data from 4, 8, and 12 to determine which option is
 used.

<table>
<thead>
<tr>
<th>Warning light specification</th>
<th>Audible signal specification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7.3 (a)(1) Belt stowed & key on or start</td>
<td>Item 8: Stays On</td>
</tr>
<tr>
<td>S7.3 (a)(2) Belt latched & key on or start</td>
<td>Item 12: 0</td>
</tr>
<tr>
<td>Belt stowed & key on or start</td>
<td>Item 8: Stays On</td>
</tr>
</tbody>
</table>

* 49 USCS @ 30124 does NOT allow an audible signal to operate for more than 8 seconds.
A voluntary audible signal after the 4 to 8 second required signal may be provided. It must be differentiated from the required signal (5/25/2001 legal interpretation to Longacre and Associates).
14. The seat belt warning system meets the requirements of (manufacturers may comply with either section)
 - S7.3 (a)(1)
 - S7.3 (a)(2)
 - FAIL – does not meet the requirements of either option

15. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))
 - Fasten seat belts
 - Fasten belts
 - Symbol 101 - 🦼
 - FAIL – does not use any of the above wording or symbol

REMARKS:

I certify that I have read and performed each instruction.

Signature: __________________________

Date: _____10/3/05_____
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
NHTSA No.: C60503
Test Date: 10/3/05

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 -
 - Yes, this form is complete
 - No, continue with this check sheet

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No- go to 5
 - Yes – Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes-Use the seat back angle determined in Data Sheet 14.2

6. Position the test dummies according to dummy position placement instructions in Appendix F. **Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.**

7. Fasten the seat belt latch.

8. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

9. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy’s chest. At that point pull the belt webbing out 3 inches from the dummy’s chest and release until it is within one inch from the dummy’s chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy’s chest exerted by the belt webbing.

 Contact Force (lb):
 - 0.0 to 0.7 pounds – Pass 0.44 lbs.
 - Greater than 0.7 pounds - Fail
REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 10/3/05
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
NHTSA No.: C60503
Test Date: 10/3/05

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DEVELOPMENTAL SEATING POSITION: Center Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes, this form is complete
 - No, continue with this check sheet

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No- go to 5
 - Yes – Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes-Use the seat back angle determined in Data Sheet 14.2

6. Position the test dummies according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

7. Fasten the seat belt latch.

8. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

9. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.

 Contact Force (lb):
 - 0.0 to 0.7 pounds – Pass 0.42 lbs.
 - Greater than 0.7 pounds - Fail
REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 10/3/05
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2006 Mercedes E350
NHTSA No.: C60503
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
Test Date: 10/3/05

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes, this form is complete
 - No, continue with this check sheet

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A, no lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A, no additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No- go to 5
 - Yes – Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes-Use the seat back angle determined in Data Sheet 14.2

6. Position the test dummies according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

7. Fasten the seat belt latch.

8. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

9. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.
 - Contact Force (lb):
 - 0.0 to 0.7 pounds – Pass 0.40 lbs.
 - Greater than 0.7 pounds - Fail

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
Test Date: 10/3/05
REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 10/3/05
Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Not Applicable For Any Position - Passenger Car

1. Put the seat in the forwardmost fore-aft and full down height position determined in Data Sheet 14.2. (S10.7)
2. Put the seat back angle in the position determined in Data Sheet 14.2.
3. Position the test dummy using the procedures in Appendix F. (Some modifications to the positioning procedure may need to be made because the seat is in its forward most position. Note on the Appendix F positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy.) Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.
4. Position the adjustable seat belt anchorage in the manufacturer’s nominal design position for a 50th percentile adult male occupant.
5. Attach the inboard reach string to the base of the head following the instructions on Figure 3.
6. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.
7. Place the latch plate in the stowed position.
8. Extend inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate an arc of the reach envelope of the test dummy’s arms. Is the latch plate within the reach envelope?
 - Yes – Pass
 - No
9. Extend outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy’s arms. Is the latch plate within the reach envelope?
 - Yes – Pass
 - No
10. Is the latch plate within the inboard (item 10) or outboard (item 11) reach envelope?
 - Yes – Pass
 - No – Fail
11. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 - Yes – Pass
 - No – Fail

DATA SHEET 11

LATCH PLATE ACCESS (S7.4.4)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
NHTSA No.: C60503
Test Date: 10/3/05
REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 10/3/05
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Not Applicable For Any Position - Passenger Car

<table>
<thead>
<tr>
<th>GVWR:</th>
</tr>
</thead>
</table>

1. Is the vehicle a passenger car or walk-in van-type vehicle?

| Yes, this form is complete |

| No |

2. Put the seat in the mid fore-aft and full down height position determined in Data Sheet 14.2. (S8.1.2)

3. Put the seat back angle in the position determined in Data Sheet 14.2. (8.1.3)

4. Position the Part 572 Subpart E test dummy according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

5. Fasten the seat belt around the dummy.

6. Remove all slack from the lap belt portion. (S10.9)

| N/A, the seat does not have a fore-aft adjustment |

7. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

8. Apply a 2 to 4 pound tension load to the lap belt. (S10.9)

Pound load applied:

9. Is the belt system equipped with a tension relieving device?

| Yes, continue |

| No, go to 12 |

10. Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner’s manual. (S10.9).

11. Check the statement that applies to this test vehicle:

| Yes – Pass go to 12 |

| No – go to 11.2 |

11.1 Check the statement that applies to this test vehicle:
The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

| Yes – Pass go to 12 |

| No – go to 11.2 |

11.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

| Yes – Pass go to 12 |

| No – go to 11.3 |

11.3 Neither 11.1 nor 11.2 apply.

| Fail |
12. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?
 - Yes – Pass
 - No – Fail

13. If this test vehicle has an open body (without doors) and has a belt system with a tension-relieving device, does the belt system fully retract when the tension-relieving device is deactivated?
 - N/A
 - Yes – Pass
 - No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 10/3/05
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes – Pass
 - No – Fail
 Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes – Pass
 - No – Fail
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 10/3/05
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes – Pass
 - No – Fail
 Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes – Pass
 - No – Fail
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 10/3/05
Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1(b))</td>
</tr>
<tr>
<td>X</td>
<td>Yes, this form is complete</td>
</tr>
<tr>
<td>X</td>
<td>No, go to 2</td>
</tr>
<tr>
<td>2.</td>
<td>Is the seat removable? (S7.4.6.1(b))</td>
</tr>
<tr>
<td>X</td>
<td>Yes, this form is complete</td>
</tr>
<tr>
<td>X</td>
<td>No, go to 3</td>
</tr>
<tr>
<td>3.</td>
<td>Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))</td>
</tr>
<tr>
<td>X</td>
<td>Yes, this form is complete</td>
</tr>
<tr>
<td>X</td>
<td>No, go to 4</td>
</tr>
<tr>
<td>4.</td>
<td>Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))</td>
</tr>
<tr>
<td>X</td>
<td>Yes, go to 5</td>
</tr>
<tr>
<td>X</td>
<td>No, this form is complete</td>
</tr>
<tr>
<td>5.</td>
<td>Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))</td>
</tr>
<tr>
<td>X</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
</tr>
<tr>
<td></td>
<td>Identify the part(s) on top or above the seat.</td>
</tr>
<tr>
<td>X</td>
<td>Seat belt latch plate</td>
</tr>
<tr>
<td>X</td>
<td>Buckle</td>
</tr>
<tr>
<td>X</td>
<td>Seat belt webbing</td>
</tr>
<tr>
<td>6.</td>
<td>Are the remaining two seat belt parts accessible under normal conditions?</td>
</tr>
<tr>
<td>X</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
</tr>
<tr>
<td>7.</td>
<td>The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)</td>
</tr>
<tr>
<td>X</td>
<td>Yes – Pass</td>
</tr>
<tr>
<td></td>
<td>No – Fail</td>
</tr>
</tbody>
</table>
8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 10/3/05
DATA SHEET 14

MARKING OF REFERENCE POINTS FOR VARIOUS TEST POSITIONS AND POINTS

Test Vehicle: 2006 Mercedes E350
NHTSA No.: C60503
Test Program: FMVSS 208 Compliance
Test Date: 2/15/06
Test Technician: Brian Roach

DATA SHEET 14.1

MARKING OF REFERENCE POINTS FOR 5th FEMALE

X Driver Seat __Passenger Seat

1. Seat Position

X 1.1 Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1, S20.1.9.1, S20.4.1, S22.1.7.1)
__ N/A – No lumbar adjustment

X 1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S20.4.1, S22.1.7.1, S22.4.2.1, S22.4.3.1, S24.4.2.1, S26.2.3, S26.3.1)
X N/A – No additional support adjustment

X 1.3 Position an adjustable leg support system in its rearmost position. (8/27/04 interpretation to Toyota)
X N/A – No adjustable leg support system

X 1.4 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion. (S16.3.1.12)
X 1.5 Draw a line (seat cushion reference line) through the seat cushion reference point. (S16.3.1.13)
X 1.6 Use only the controls that primarily move the seat in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S22.1.7.3)
X 1.7 If the seat cushion adjusts fore-aft, independent of the seat back, use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S20..1.9.3)
X N/A – No independent fore-aft seat cushion adjustment

X 1.8 Use any part of any control, other than the parts just used for fore-aft positioning, to determine the range of angles of the seat cushion reference line and to set the seat cushion reference line at the mid-angle. (S16.2.10.3.1)
Maximum angle 4.3 Nose up
Minimum angle 7.1 Nose down
Mid-angle 1.4 Nose down

X 1.9 If the seat and/or seat cushion height is adjustable, use any part of any control other than the parts which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-angle found in 1.8. (S16.2.10.3.1)
__N/A – No seat height adjustment

X 1.10 Use only the controls that primarily move the seat in the fore-aft direction to verify the seat is in the rearmost position.
1.11 Use only the controls that primarily move the seat in the fore-aft direction to mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one detent at a time and mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.

1.12 Use only the controls that primarily move the seat in the fore-aft direction to place the seat in the rearmost position.

1.13 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S22.4.3.1, S24.1.2, S24.3.1, S24.4.3.1, S26.2.3, S26.3.1)

N/A – No seat height adjustment. Go to 1.18

1.14 Use only the controls that primarily move the seat and/or seat cushion in the fore-aft direction to place the seat in the mid-fore-aft position.

1.15 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

1.16 Use only the control that change the seat in the fore-aft direction to place the seat in the foremost position. (S16.2.10.3.2)

1.17 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S16.2.10.3.3, S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

1.18 Visually mark for future reference the seat back angle at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer for the rearmost, mid, and foremost seat positions. (S20.1.9.5, S22.1.7.5, S22.4.2.1, S22.4.3.1, S24.1.2, S24.4.2.1, S26.2.3, S26.3.1)

N/A – No seat back angle adjustment

Manufacturer’s design seat back angle 19.5 Degrees

1.19 Is the seat a bucket seat?

Yes, go to 1.20 and skip 1.21

No, go to 1.21 and skip 1.20

1.20 Bucket seats:

Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S16.3.1.10 & S20.1.10)

1.21 Bench seats (complete ONLY the one that is applicable to the seat being marked):

1.21.1 Driver Seat

Locate and mark for future reference the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface.
1.21.2 Passenger Seat

Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S20.2.1.3, S22.2.1.3, S24.2.3, S20.4.4, S22.2.2.1(b), S22.2.2.3(b), S22.2.2.4(a), S22.2.2.5(a), S22.2.2.6(a), S22.2.2.7(a), S24.2.3(a))

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _________

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.) _________

2. Head Restraint Position

N/A Vehicle contains automatic head restraints.

N/A, there is no head restraint adjustment

X 2.1 Adjust the head restraint to its lowest position. (S16.2.10.2, S20.1.9.6 S20.4.1, S22.1.7.6, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.2 All adjustments of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. Mark the foremost position. (S16.2.10.2 & S16.3.4.4 & S20.1.9.6, S20.4.1, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and mark a horizontal plane through the midpoint of this distance. (S16.3.4.3)

Vertical height of head restraint 200 mm
Mid-point height 100 mm

[Signature]

2/15/06

I certify that I have read and performed each instruction. Date
DATA SHEET 14.1
MARKING OF REFERENCE POINTS FOR 5th FEMALE

__Driver Seat X Passenger Seat

1. Seat Position

X 1.1 Position the seat’s adjustable lumbar supports so that the lumbar supports are in the lowest, retracted or deflated adjustment positions. (S16.2.10.1, S20.1.9.1, S20.4.1, S22.1.7.1)

__N/A – No lumbar adjustment

X 1.2 Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2, S20.1.9.2, S20.4.1, S22.1.7.1, S22.4.2.1, S22.4.3.1, S24.4.2.1, S26.2.3, S26.3.1)

X N/A – No additional support adjustment

X 1.3 Position an adjustable leg support system in its rearmost position. (8/27/04 interpretation to Toyota)

X N/A – No adjustable leg support system

X 1.4 Mark a point (seat cushion reference point) on the side of the seat cushion that is between 150 mm and 250 mm from the front edge of the seat cushion. (S16.3.1.12)

X 1.5 Draw a line (seat cushion reference line) through the seat cushion reference point. (S16.3.1.13)

X 1.6 Use only the controls that primarily move the seat in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S22.1.7.3)

X 1.7 Use only the controls that primarily move the seat cushion in the fore-aft direction to move the seat cushion reference point to the rearmost position. (S16.2.10.3.1, S20.1.9.3)

X N/A – No independent fore-aft seat cushion adjustment

X 1.8 Use any part of any control, other than the parts just used for fore-aft positioning, to determine the range of angles of the seat cushion reference line and to set the seat cushion reference line at the mid-angle. (S16.2.10.3.1)

Maximum angle 4.3 Nose up
Minimum angle 6.9 Nose down
Mid-angle 1.3 Nose down

X 1.9 If the seat and/or seat cushion height is adjustable, use any part of any control other than the parts which primarily move the seat or seat cushion fore-aft, to put the seat cushion reference point in its lowest position with the seat cushion reference line angle at the mid-angle found in 1.8. (S16.2.10.3.1)

__N/A – No seat height adjustment

X 1.10 Use only the controls that primarily move the seat in the fore-aft direction to verify the seat is in the rearmost position.

X 1.11 Use only the controls that primarily move the seat in the fore-aft direction to mark for future reference the fore-aft seat positions. Mark each position so that there is a visual indication when the seat is at a particular position. For manual seats, move the seat forward one detent at a time and mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost.

X 1.12 Use only the controls that primarily move the seat in the fore-aft direction to place the seat in the rearmost position.
X 1.13 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S22.4.3.1, S24.1.2, S24.3.1, S24.4.3.1, S26.2.3, S26.3.1)

__N/A – No seat height adjustment. Go to 1.18

X 1.14 Use only the controls that primarily move the seat and/or seat cushion in the fore-aft direction to place the seat in the mid-fore-aft position.

X 1.15 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

X 1.16 Use only the control that change the seat in the fore-aft direction to place the seat in the foremost position. (S16.2.10.3.2)

X 1.17 Use any part of any control, other than the parts which primarily move the seat or seat cushion fore-aft, to find and visually mark for future reference the maximum, minimum, and middle height of the seat cushion reference point with the seat cushion reference line at the mid-angle determined in 1.8. (S16.2.10.3.3, S20.1.9.4, S22.1.2, S22.1.7.4, S22.3.1, S24.1.2, S24.3.1)

X 1.18. Visually mark for future reference the seat back angle at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer for the rearmost, mid, and foremost seat positions. (S20.1.9.5, S22.1.7.5, S22.4.2.1, S22.4.3.1, S24.1.2, S24.4.2.1, S26.2.3, S26.3.1)

__ N/A – No seat back angle adjustment

Manufacturer’s design seat back angle 19.5 Degrees

X 1.19. Is the seat a bucket seat?

X Yes, go to 1.20 and skip 1.21

__ No, go to 1.21 and skip 1.20

X 1.20 Bucket seats:

Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S16.3.1.10 & S20.1.10)

__1.21 Bench seats (complete ONLY the one that is applicable to the seat being marked):

__1.21.1 Driver Seat

Locate and mark for future reference the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface.

__1.21.2 Passenger Seat

Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S20.2.1.3, S22.2.1.3, S24.2.3, S20.4.4, S22.2.2.1(b), S22.2.3(b), S22.2.2.4(a), S22.2.2.5(a), S22.2.2.6(a), S22.2.2.7(a), S24.2.3(a))

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. ______

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. (The vertical plane through this longitudinal centerline is Plane B for suppression.) ______
2. Head Restraint Position

N/A Vehicle contains automatic head restraints.
N/A, there is no head restraint adjustment

X 2.1 Adjust the head restraint to its lowest position. (S16.2.10.2, S20.1.9.6 S20.4.1, S22.1.7.6, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.2 All adjustments of the head restraint shall be used to position it full forward. For example, if it rotates, rotate it such that the head restraint extends as far forward as possible. Mark the foremost position. (S16.2.10.2 & S16.3.4.4 & S20.1.9.6, S20.4.1, S22.4.2.1, S22.4.3.1, S24.4.3.1, S26.2.3, S26.3.1)

X 2.3 Measure the vertical distance from the top most point of the head restraint to the bottom most point. Locate and mark a horizontal plane through the midpoint of this distance. (S16.3.4.3)
Vertical height of head restraint 200 mm
Mid-point height 100 mm

[Signature]

I certify that I have read and performed each instruction. Date

2/15/06
DATA SHEET 14.3
MARKING OF REFERENCE POINTS FOR STEERING WHEEL

X 1. Is the steering wheel adjustable up and down and/or in and out?
 X Yes – go to 2
 __No – this form is complete

X 2. Find and mark for future reference each up and down position. Label three of the
 positions with the following: H for highest, M for mid-position (if there is no mid-position,
 label the next lowest adjustment position), and L for lowest.
 __N/A – steering wheel is not adjustable up and down

X 3. Find and mark for future references each in and out position. Label three of the
 positions with the following: F for foremost, M for mid-position (if there is no mid-position,
 label the next rearmost adjustment position), and R for rearmost.
 __N/A – steering wheel is not adjustable in and out.

I certify that I have read and performed each instruction.

Signature: __________________________

Date: __________ 2/15/06 ___________
DATA SHEET 14.4
MARKING OF REFERENCE POINTS FOR DRIVER LOW RISK DEPLOYMENT

Position 1 **Position 2**

1. Position the steering wheel so the front wheels are in the straight-ahead position. (S26.2.1)

2. Position any adjustable parts of the steering controls to the mid-position as determined in Data Sheet 14.3 above. If a mid-position adjustment is not achievable, position the controls to the next lowest detent position. (S26.2.1)

3. Locate and mark the point that is defined by the intersection of the steering wheel cover and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air bag. The vertical plane parallel to the vehicle longitudinal centerline through this point is referred to as “Plane E.” (Check determination method below.) (S26.2.2)

Measurements with respect to measurement reference points:

The longitudinal centerline of the air bag was used.

__

Point determined using manufacturer’s information supplied by the COTR.
(Include manufacturer’s information in the test report.)

OR

Point determined by test lab personnel and approved by the COTR.
(Include supporting documentation in the test report.)

4. Locate the highest point of the air bag module cover. The horizontal plane through this point is referred to as “Plane F.” (Check determination method below.) (S26.2.6)

Measurements with respect to measurement reference points:

The top of the air bag module cover was used.

__

__

Point determined using manufacturer’s information supplied by the COTR.
(Include manufacturer’s information in the test report.)

OR

Point determined by test lab personnel and approved by the COTR.
(Include supporting documentation in the test report.)

___ _____2/15/06_____

I certify that I have read and performed each instruction. Date
Locate and mark the point that is defined by the intersection of the instrument panel and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and the volumetric center of the static fully inflated air bag. (S22.4.1.2, S24.4.1.2) The horizontal plane thru this point is referred to as “Plane C” (S22.4.1.4 and S24.4.1.4). The vertical plane parallel to the vehicle longitudinal centerline and through this point is referred to as “Plane D” (S22.4.1.3 and S24.4.1.3). (Check determination method below.)

Measurements with respect to measurement reference points:

X Point determined using manufacturer’s information supplied by the COTR .
 (Include manufacturer’s information in the test report.) See Appendix D-73
OR
 Point determined by test lab personnel and approved by the COTR.
 (Include supporting documentation in the test report.)

I certify that I have read and performed each instruction.

Date

2/15/06
DATA SHEET 16
AIR BAG SUPPRESSION TELLTEALE (S19.2.2)

Test Vehicle: 2006 Mercedes E350 NHTSA No.: C60503
Test Program: FMVSS 208 Compliance Test Date: 10/25/05
Test Technician: Brian Roach

X 1. Is the vehicle certified to any suppression performance standards of FMVSS 208?
 X Yes – go to 2
 _No – this form is complete

X 2. Does telltale emit yellow light when the air bag is suppressed? (S19.2.2(a))
 X Yes - Pass _NO – FAIL
 X No - go to 3.2

X 3. Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S19.2.2(b)) on the telltale? (S19.2.2(b))
 X Yes – Pass, go to 4
 _No – go to 3.2

 3.2 within 25 mm of the telltale? (S19.2.2(b)) ________mm from the edge of the telltale light
 _Yes - Pass _NO – FAIL

X 4. Is the telltale separate from the air bag readiness indicator? (S19.2.2(c))
 X Yes - Pass _NO – FAIL

X 5. Is the telltale within the interior of the vehicle? (S19.2.2(d))
 X Yes - Pass _NO – FAIL

X 6. Is the telltale forward of and above the design H-point of both the driver’s and the front outboard passenger’s seat when the seats are in their forwardmost seating positions? (S19.2.2(d))
 X Yes - Pass _NO – FAIL

X 7. Is the telltale away from surfaces that can be used for temporary or permanent storage of objects that could obscure the telltale from either the driver’s or front outboard passenger’s view? (S19.2.2(d))
 X Yes - Pass _NO – FAIL

X 8. Is the telltale located so that it is not obscured from the driver or front outboard passenger by a rear-facing child restraint in Appendix A installed in the front outboard passenger seat? (S19.2.2(d))
 X Yes - Pass _NO – FAIL

X 9. Is the telltale visible or recognizable during the night? (S19.2.2(e))
 X Yes - Pass _NO – FAIL

X 10. Is the telltale visible or recognizable during the day? (S19.2.2(e))
 X Yes - Pass _NO – FAIL

X 11. If there is a visibility adjustment, do all the adjustment levels make the telltale visible and recognizable? (S19.2.2(g))
 X N/A-No visibility adjustment
 _Yes - Pass _NO – FAIL

X 12. Does the telltale remain illuminated while the air bag is suppressed? (S19.2.2(h)) (Leave the air bag suppressed for 5 minutes.)
 X Yes - Pass _NO – FAIL

X 13. Is the telltale off while the air bag is activated? (S19.2.2(h)) (Leave the air bag activated for 5 minutes.)
 X Yes - Pass _NO – FAIL

__ _____10/25/05_____
I certify that I have read and performed each instruction. Date

Brian Roach
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

NHTSA No.:	C60503	TEST DATE:	10/21/05
LABORATORY:	MGA	TECHNICIANS:	TB
DUMMY TYPE:	12 Month Old	DUMMY SERIAL NO.:	083

CHILD RESTRAINT NAME:	Britax
CHILD RESTRAINT MODEL:	Handle With Care 191
DATE OF MANUFACTURE:	5-26-2000

Base: ___On ___Off ___X N/A-Restraint does not have a removable base

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer’s specified anchorage position: Top
Tested anchorage position: Top

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN506)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C60503</th>
<th>TEST DATE:</th>
<th>10/25/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>TB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>083</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Evenflo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>First Choice 204</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-20-2000</td>
</tr>
</tbody>
</table>

Base: ___On ___Off ___X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer's specified anchorage position: Top
Tested anchorage position: Top

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 80</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 90</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN506)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (0 = Full Forward; 250 = Full Rearward; 250mm total Seat Slide travel)
DATA SHEET 17 SUMMARY

Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)

Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA No.</th>
<th>TEST DATE:</th>
<th>10/21/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>TECHNICIANS:</td>
<td>MGA</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>DUMMY SERIAL NO.:</td>
<td>12 Month Old</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME:	Graco
CHILD RESTRAINT MODEL:	Infant 8457
DATE OF MANUFACTURE:	8-31-2000

Base: _X On _ Off _N/A-Restraint does not have a removable base

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer’s specified anchorage position: Top
Tested anchorage position: Top

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 40 *</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 70 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (0 = Full Forward; 250 = Full Rearward; 250mm total Seat Slide travel)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>TEST DATE:</th>
<th>10/21/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Graco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Infant 8457</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-31-2000</td>
</tr>
</tbody>
</table>

Base: __On _X_Off ___N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer's specified anchorage position: Top
Tested anchorage position: Top

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

<table>
<thead>
<tr>
<th>Test Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Belt</td>
</tr>
<tr>
<td>Belted Rear Facing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Unbelted Rear Facing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Unbelted Forward Facing</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN506)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (0 = Full Forward; 250 = Full Rearward; 250mm total Seat Slide travel)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C60503</th>
<th>TEST DATE:</th>
<th>10/21/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>TB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>083</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Britax</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Roundabout 161</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>7-21-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off _X_ N/A-Restraint does not have a removable base

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer’s specified anchorage position: Top
Tested anchorage position: Top

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Rearward</td>
<td>134</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Foremost position. (SN506)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C60503</th>
<th>TEST DATE:</th>
<th>10/21/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>TB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>083</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME: Century
CHILD RESTRAINT MODEL: Encore 4612
DATE OF MANUFACTURE: 8-16-2000

Base: __On __Off __X N/A-Restraint does not have a removable base

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer’s specified anchorage position: Top
Tested anchorage position: Top

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>No Blanket / Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 25*</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN506)

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (0 = Full Forward; 250 = Full Rearward; 250mm total Seat Slide travel)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>TEST DATE:</th>
<th>10/25/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>TECHNICIANS:</td>
<td>TB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>DUMMY SERIAL NO.:</td>
<td>083</td>
</tr>
</tbody>
</table>

CHILD RESTRAINT NAME:	Evenflo
CHILD RESTRAINT MODEL:	Medallion 254
DATE OF MANUFACTURE:	6-1-2000

Base: _On _Off _X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer's specified anchorage position: Top
Tested anchorage position: Top

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>No Blanket / Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN506)
DATA SHEET 18 SUMMARY
Suppression Test Using Newborn Infant Dummy (Part 572, Subpart K)
Section A Car Bed

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C60503</th>
<th>TEST DATE:</th>
<th>10/25/05</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>TB</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>Newborn Infant</td>
<td>DUMMY SERIAL NO.:</td>
<td>003</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAR BED NAME:</th>
<th>Cosco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAR BED MODEL:</td>
<td>Dream Ride 02-719</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-16-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off _X_ N/A-Restraint does not have a removable base
(A car bed with a removable base shall be treated as two separate models, i.e. this form and test procedure will be completed with the base on and then repeated on a new form with the base off.

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Manufacturer’s specified anchorage position: Top
Tested anchorage position: Top

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Foremost position. (SN506)
DATA SHEET 25 SUMMARY
Low Risk Deployment Tests Using an Unbelted 3-Year-Old Dummy (Part 572, Subpart P) (S22)
Position 1 – Chest On Instrument Panel (S22.4.2)

<table>
<thead>
<tr>
<th>NHTSA No.</th>
<th>C60503</th>
<th>TEST DATE:</th>
<th>2/15/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Tested seat position: Full Aft
Thorax cavity angle: 0.4°
Thigh angle: 57.2°
Point 1 height: 2 mm Below AB Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.1</td>
</tr>
</tbody>
</table>

3-Year-Old SN 032 Position 1 (Chest on Instrument Panel) 2-15-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>No Valid Data</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>No Valid Data</td>
</tr>
</tbody>
</table>

The data is not reported because of noise caused by a dummy grounding problem.
DATA SHEET 26 SUMMARY

Low Risk Deployment Tests Using an Unbelted 3-Year-Old Dummy (Part 572, Subpart P) (S22)

Position 2 – Head On Instrument Panel (S22.4.3)

<table>
<thead>
<tr>
<th>NHTSA No.:</th>
<th>C60503</th>
<th>TEST DATE:</th>
<th>6/7/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JH/BR</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3-Year-Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Tested seat position: Full Forward

Thorax cavity angle: 0.2°
Thigh angle: 12.0°

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.3</td>
</tr>
</tbody>
</table>

3-Year-Old SN 032 Position 2 (Head on Instrument Panel) 6-7-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>570</td>
<td>247</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>47.7</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.1</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>20.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>11.5</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1130 N</td>
<td>380</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1380 N</td>
<td>186</td>
</tr>
<tr>
<td>Chest g</td>
<td>55 g</td>
<td>19</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>34 mm</td>
<td>0</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))
DATA SHEET 27 SUMMARY
Low Risk Deployment Tests Using an Unbelted 6-Year-Old Dummy (Part 572, Subpart P) (S24)
Position 1 – Chest On Instrument Panel (S24.4.2)

NHTSA No.: C60503 TEST DATE: 3/29/06
LABORATORY: MGA TECHNICIANS: BS/BR
DUMMY TYPE: 6-Year-Old DUMMY SERIAL NO.: 155

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Tested seat position: Full Aft
Thorax cavity angle: 6.2°
Point 1 height: 40 mm Below AB Module

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.2</td>
</tr>
</tbody>
</table>

6-Year-Old SN 155 Position 1 (Chest on Instrument Panel) 3-29-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>12</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>98.6</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>13.6</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>1.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>407</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>29</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>12</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>4</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))
DATA SHEET 28 SUMMARY
Low Risk Deployment Tests Using an Unbelted 6-Year-Old Dummy (Part 572, Subpart N) (S24)
Position 2 – Head On Instrument Panel (S24.4.3)

NHTSA No.: C60503 TEST DATE: 5/10/06
LABORATORY: MGA TECHNICIANS: BR/JH
DUMMY TYPE: 6-Year-Old DUMMY SERIAL NO.: 155

Manufacturer’s design seat back angle: 19.5° On Seat Back Frame
Tested seat back angle: 19.5° On Seat Back Frame
Tested seat position: Full Forward

Thorax cavity angle: 26.7°
Thigh angle: 4.6°

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.3</td>
</tr>
</tbody>
</table>

6-Year-Old SN 155 Position 2 (Head on Instrument Panel) 5-10-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>474</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>32.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>14.2</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>0.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>12.2</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>1490 N</td>
<td>558</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>1820 N</td>
<td>332</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>10</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>40 mm</td>
<td>2</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 100 ms after the initial deployment of the air bag. (S4.11(b))
DATA SHEET 29 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26)
Position 1 - Chin On Module (S26.2)

NHTSA No.: C60503 TEST DATE: 2/15/06
LABORATORY: MGA TECHNICIANS: BR/BS/DW
DUMMY TYPE: 5th Percentile Female DUMMY SERIAL NO.: 081

Manufacturer’s design seat back angle: 19.5° seat back angle
Tested seat back angle: 19.5° seat back angle
Tested seat position: Full Aft

Tested steering wheel angle: 20.9°
Thorax cavity angle: 26.9°
Bottom of chin height: 1 mm Above Module

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.0</td>
</tr>
</tbody>
</table>

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>5th Percentile Female SN 081 Position 1 (Chin On Module) 2-15-05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injury Criteria</td>
</tr>
<tr>
<td>HIC15</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
</tr>
<tr>
<td>Time (ms)</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
</tr>
<tr>
<td>Time (ms)</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
</tr>
<tr>
<td>Time (ms)</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
</tr>
<tr>
<td>Time (ms)</td>
</tr>
<tr>
<td>Neck Tension</td>
</tr>
<tr>
<td>Neck Compression</td>
</tr>
<tr>
<td>Chest g</td>
</tr>
<tr>
<td>Chest Displacement</td>
</tr>
<tr>
<td>Left Femur</td>
</tr>
<tr>
<td>Right Femur</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms
DATA SHEET 30 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female
Dummy (Part 572, Subpart O) (S26)
Position 2 - Chin On Rim (S26.3)

NHTSA No.: C60503 TEST DATE: 3/29/06
LABORATORY: MGA TECHNICIANS: BR
DUMMY TYPE: 5th Percentile Female DUMMY SERIAL NO.: 081

Manufacturer's design seat back angle: 19.5° seat back angle
Tested seat back angle: 19.5° seat back angle
Tested seat position: Full Aft

Tested steering wheel angle: 18.4°
Thorax cavity angle: 24.2°
Chin Point height: 0 mm Below Steering Wheel Target

Note:
The chin on rim steering wheel target is 10 mm below the highest point on the steering wheel.
*The dummy contacted the windshield with the steering wheel at mid position. The steering controls were adjusted to lower the upper steering wheel rim the necessary amount to bring the Chin Point coincident with the upper steering wheel rim. The rear thorax cavity was adjusted along with the steering wheel angle.

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>200.0</td>
<td>200.0</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 081 Position 2 (Chin On Rim) 3-29-06

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>9</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>16.2</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>80.0</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>296.2</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.2</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>55.7</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>488</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>80</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>24</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>16</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>84</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>44</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 200 ms; Injuries calculated on 0 ms to 325 ms
DATA SHEET 32

VEHICLE WEIGHT, FUEL TANK, AND ATTITUDE DATA

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: X 32 to 40 kmph 0 to 48 kmph 0 to 56 kmph
DRIVER DUMMY: X 5th female 50th male
PASSENGER DUMMY: X 5th female 50th male

1. Fill the transmission with transmission fluid to the satisfactory range.
2. Drain fuel from vehicle
3. Run the engine until fuel remaining in the fuel delivery system is used and the engine stops.
4. Record the usable fuel tank capacity supplied by the COTR
 Useable Fuel Tank Capacity supplied by COTR: 80.0 liters (21.13 gallons)
5. Record the fuel tank capacity supplied in the owner's manual.
 Useable Fuel Tank Capacity in owner's manual: 80.0 liters (21.13 gallons)
6. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” or gasoline, fill the fuel tank.
 Amount Added: 80.0 liters (21.13 gallons)
7. Fill the coolant system to capacity.
8. Fill the engine with motor oil to the Max. mark on the dip stick.
9. Fill the brake reservoir with brake fluid to its normal level.
10. Fill the windshield washer reservoir to capacity.
11. Inflate the tires to the tire pressure on the tire placard. If no tire placard is available, inflate the tires to the recommended pressure in the owner’s manual.
 Tire placard pressure: RF: 28 psi LF: 28 psi RR: 30 psi LR: 30 psi
 Owner’s manual pressure: RF: 28 psi LF: 28 psi RR: 30 psi LR: 30 psi
 Actual inflated pressure: RF: 28 psi LF: 28 psi RR: 30 psi LR: 30 psi
12. Record the vehicle weight at each wheel to determine the unloaded vehicle weight (UVW), i.e. "as delivered" weight.
 Right Front (kg): 463.6 Right Rear (kg): 410.5
 Left Front (kg): 424.1 Left Rear (kg): 438.6
 Total Front (kg): 887.7 Total Rear (kg): 849.1
 % Total Weight: 51.1 % Total Weight: 48.9
 UVW = TOTAL FRONT PLUS TOTAL REAR (KG): 1736.8
13. UVW Test Vehicle Attitude: (All dimensions in millimeters)
13.1 Mark a point on the vehicle above the center of each wheel.
13.2 Place the vehicle on a level surface.
13.3 Measure perpendicular to the level surface to the 4 points marked on the body and record the measurements.

RF: 679 LF: 693 RR: 684 LR: 672

14. Calculate the Rated Cargo and Luggage Weight (RCLW): 120 kg

14.1 Does the vehicle have the vehicle capacity weight (VCW) on the certification label or tire placard?

- Yes, go to 14.3
- No, go to 14.2

14.2 VCW = Gross Vehicle Weight – UVW

VCW = __________ - __________ = __________

14.3 VCW = 460 kg (1010 lbs)

14.4 Does the certification or tire placard contain the Designated Seating Capacity (DSC)?

- Yes, go to 14.6
- No, go to 14.5 and skip 14.6

14.5 DSC = Total number of seat belt assemblies = __________

14.6 DSC = 5

14.7 RCLW = VCW – (68 kg x DSC) = 460 kg - (68 kg x 5) = 120 kg

14.8 Is the vehicle certified as a truck, MPV or bus (see the certification label on the door jamb)?

- Yes, if the calculated RCLW is greater than 136 kg, use 136 kg as the RCLW. (S8.1.1)
- No, use the RCLW calculated in 14.7

15. Fully Loaded Weight (100% fuel fill): 1952.7 kg

15.1 Place the appropriate test dummy in both front outboard seating positions.

Driver: 5th female 50th male
Passenger: 5th female 50th male

15.2 Load the vehicle with the RCLW from 14.7 or 14.8 whichever is applicable.

15.3 Place the RCLW in the cargo area. Center the load over the longitudinal centerline of the vehicle. (S8.1.1 (d))

15.4 Record the vehicle weight at each wheel to determine the Fully Loaded Weight.

<table>
<thead>
<tr>
<th></th>
<th>Right Front (kg):</th>
<th>Right Rear (kg):</th>
<th>Total Front (kg):</th>
<th>Total Rear (kg):</th>
<th>% Total Weight:</th>
<th>% Total Weight:</th>
<th>(% GVW = Axle GVW divided by Vehicle GVW)</th>
<th>Fully Loaded Weight = Total Front Plus Total Rear (kg):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver: 5th female</td>
<td>475.8</td>
<td></td>
<td>914.9</td>
<td></td>
<td>46.9</td>
<td>503.5</td>
<td>45.6</td>
<td>1952.7</td>
</tr>
<tr>
<td>Passenger: 5th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>female</td>
<td></td>
<td>Left Front (kg):</td>
<td>Left Rear (kg):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>439.1</td>
<td></td>
<td>491.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right Rear (kg):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Left Rear (kg):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Fully Loaded Test Vehicle Attitude: (All dimensions in millimeters)

16.1 Place the vehicle on a level surface.
16.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13.1 above) and record the measurements

17. Drain the fuel system

18. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” fill the fuel tank to 92 - 94 percent of useable capacity.

Fuel tank capacity x .94 = 80.0 liters (21.13 gallons) x .94 = 75.2 liters (19.9 gallons)

Amount added 75.0 liters (19.82 gallons) 93.8%

19. Crank the engine to fill the fuel delivery system with Stoddard solvent

20. Calculate the test weight range.

20.1 Calculated Weight = UVW (see 12 above) + RCLW (see 14 above) + 2x(dummy weight)

1954.8 kg = 1736.8 kg + 120.0 kg + 98.0 kg

20.2 Test Weight Range = Calculated Weight (- 4.5 kg, - 9 kg.)
- Max. Test Weight = Calculated Test Weight – 4.5 kg = 1950.3 kg
- Min. Test Weight = Calculated Test Weight – 9 kg = 1945.8 kg

21. Remove the RCLW from the cargo area.

22. Drain transmission fluid, engine coolant, motor oil, and windshield washer fluid from the test vehicle so that Stoddard solvent leakage from the fuel system will be evident.

23. Vehicle Components Removed For Weight Reduction:
- Spare tire, tool and jack, rear seat cushion, and trunk interior

24. Secure the equipment and ballast in the load carrying area and distribute it, as nearly as possible, to obtain the proportion of axle weight indicated by the gross axle weight ratings and center it over the longitudinal centerline of the vehicle.

25. If necessary, add ballast to achieve the actual test weight.

26. Ballast, including test equipment, must be contained so that it will not shift during the impact event or interfere with data collection or interfere with high-speed film recordings or affect the structural integrity of the vehicle or do anything else to affect test results. Care must be taken to assure that any attachment hardware added to the vehicle is not in the vicinity of the fuel tank or lines.

27. Record the vehicle weight at each wheel to determine the actual test weight.

<table>
<thead>
<tr>
<th>Weight</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right Front (kg):</td>
<td>480.8</td>
</tr>
<tr>
<td>Left Front (kg):</td>
<td>450.0</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>930.8</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>47.8</td>
</tr>
<tr>
<td>% GVW</td>
<td>45.6</td>
</tr>
<tr>
<td>Total Rear (kg):</td>
<td>1016.0</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>52.2</td>
</tr>
<tr>
<td>% GVW</td>
<td>54.4</td>
</tr>
<tr>
<td>TOTAL FRONT PLUS TOTAL REAR (kg):</td>
<td>1946.8</td>
</tr>
</tbody>
</table>
28. Is the test weight between the Max. Weight and the Min. Weight (See 20.2)?
 X Yes
 X No, explain why not.

29. Test Weight Vehicle Attitude: (all dimensions in millimeters)
 X 29.1 Place the vehicle on a level surface
 X 29.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13 above) and record the measurements
 RF: 682 LF: 694 RR: 666 LR: 657

30. Summary of test attitude
 X 30.1 AS DELIVERED:
 RF: 679 LF: 693 RR: 684 LR: 672
 AS TESTED:
 RF: 682 LF: 694 RR: 666 LR: 657
 FULLY LOADED:

 X 30.2 Is the "as tested" test attitude equal to or between the “fully loaded” and “as delivered” attitude?
 X Yes
 X No, explain why not.

REMARKS:
I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 7/18/06
DATA SHEET 33

VEHICLE ACCELEROMETER LOCATION AND MEASUREMENT

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
NHTSA No.: C60503
Test Date: 7/18/06

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: X 32 to 40 kmph | _ 0 to 48 kmph | _ 0 to 56 kmph
DRIVER DUMMY: X 5th female | _ 50th male
PASSENGER DUMMY: X 5th female | _ 50th male

1. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the left front outboard seating position intersects the left rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

2. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the right front outboard seating position intersects the right rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

3. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect at the top of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

4. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect the bottom of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

5. Install an accelerometer on the right front brake caliper to record x-direction accelerations. Record the location on the following chart.

6. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the top of the instrument panel. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

7. Install an accelerometer on the left front brake caliper to record x-direction accelerations. Record the location on the following chart.

8. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the floor of the trunk. Install an accelerometer on the trunk floor at this intersection to record z-direction accelerations. Record the location on the following chart.

REMARKS:

I certify that I have read and performed each instruction.

Signature: _____________________ Date: 7/18/06
Dimensions Corresponding To The Letters “A” Through “K” (Excluding “I”) Are Recorded In The Table On The Following Page. Accelerometers Corresponding To The Numbers 1 Through 8 Are Specified On The Preceding Page.
DATA SHEET 33

VEHICLE ACCELEROMETER LOCATION AND MEASUREMENTS

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRETEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>365</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>409</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3964</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3753</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side 3802</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>698</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3132</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1862</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>663</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>884</td>
</tr>
<tr>
<td>POST TEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>365</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>409</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3910</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3694</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side 3792</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>688</td>
</tr>
<tr>
<td>G (IP)</td>
<td>3132</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1862</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>673</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>884</td>
</tr>
</tbody>
</table>
DATA SHEET 34
PHOTOGRAPHIC TARGETS

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Nick Kosinski
Test Date: 7/18/06

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

1. FMVSS 208 vehicle targeting requirements (See Figures 28A and 28B)
 1.1 Targets A1 and A2 are on flat rectangular panels.
 1.2 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the front on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it.
 Distance between targets (mm): 100 mm
 1.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the back on the outboard sides of on A1 and A2. The center of each circular target is 100 mm from the one next to it.
 Distance between targets (mm): 100 mm
 1.4 The distance between the first circular target at the front of A1 and A2 and the last circular target at the back of A1 and A2 is at least 915 mm.
 Distance between the first and last circular targets (mm): 915 mm
 1.5 Firmly fix target A1 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy.
 1.6 Firmly fix target A2 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy.
 1.7 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the driver door. The centers of each circular target are at least 610 mm apart.
 Distance between targets (mm): 610 mm
 1.8 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the passenger door. The centers of each circular target are at least 610 mm apart.
 Distance between targets (mm): 610 mm
 1.9 Place tape with squares having alternating colors on the top portion of the steering wheel.
 1.10 Chalk the bottom portion of the steering wheel
 1.11 Is this an offset test?
 Yes, continue with this section
 No, go to 2.
 1.12 Measure the width of the vehicle.
 Vehicle width (mm):
1.13 Find the centerline of the vehicle. (½ of the vehicle width)

1.14 Find the line parallel to the centerline of the vehicle and 0.1 x vehicle width from the centerline of the vehicle.

1.15 Apply 25 mm wide tape with alternating black and yellow squares parallel to and on each side of the line found in 1.14. The edge of each tape shall be 50 mm from the line found in 1.14. The tape shall extend from the bottom of the bumper to the front edge of the windshield. (Figure 28D)

2. Barrier Targeting

2.1 Fix two stationary targets D1 and D2 to the barrier as shown in the Figure 28A. One target is in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy. The other is in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy

2.2 Targets D1 and D2 are on a rectangular panel.

2.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted on the sides of the rectangular panel away from the longitudinal centerline of the vehicle. The center of each circular target is 100 mm from the one next to it.

Distance between circular targets on D1 (mm): 100 mm
Distance between circular targets on D2 (mm): 100 mm

3. FMVSS 208 Dummy Targeting Requirements

3.1 Place a circular target with black and yellow quadrants on both sides of the driver dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.2 Place a circular target with black and yellow quadrants on both sides of the passenger dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.3 Place a circular target with black and yellow quadrants on the outboard shoulder of the driver dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

3.4 Place a circular target with black and yellow quadrants on the outboard shoulder of the passenger dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

4. FMVSS 204 Targeting Requirements

4.1 Is an FMVSS 204 indicant test ordered on the “COTR Vehicle Work Order?”

Yes, continue with this form.

No, this form is complete.

4.2 Resection panel (Figure 28C)

4.2.1 The panel deviates no more than 6 mm from perfect flatness when suspended vertically

4.2.2 The 8 targets on the panel are circular targets at least 90 mm in diameter and with black and yellow quadrants.

4.2.3 The center of each of the 4 outer targets are placed within 1 mm of the corners of a square measuring 914 mm on each side.

4.2.4 Locate another square with 228 mm sides and with the center of this square coincident with the center of the 914 mm square.

4.2.5 The center of the 4 inner targets are placed at the midpoints of each of the 228 mm sides.
4.3 Place a circular target at least 90 mm in diameter and with black and yellow quadrants on a material (cardboard, metal, etc.) that can be taped to the top of the steering column.

4.4 Tape the target from 4.3 to the top of the steering column in a manner that does not interfere with the movement of the steering column in a crash

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 7/18/06
RESECTION PANEL TARGETING ALIGNMENT

CAR TOP TARGETS A1 & A2

RESECTION CONTROL POINTS PANEL

A1 A2

STEERING WHEEL

TEST RUN STEERING COLUMN CAMERA VIEW OF TYPICAL TIME ZERO VEHICLE POSITION

LEFT SIDE VIEW

REAR VIEW

STEERING COLUMN TARGET B

RESECTION CONTROL POINTS PANEL

A1 A2

STEERING WHEEL

TEST RUN STEERING COLUMN CAMERA VIEW OF TYPICAL TIME ZERO VEHICLE POSITION

LEFT SIDE VIEW
PRE-RUN STEERING COLUMN HIGH SPEED CAMERA VIEW

LEFT SIDE VIEW

914 mm
DATA SHEET 35
CAMERA LOCATIONS

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
NHTSA No.: C60503
Test Date: 7/18/06
Time: 11:24 am

<table>
<thead>
<tr>
<th>CAMERA NO.</th>
<th>VIEW</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>LENS (mm)</th>
<th>SPEED (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real Time Left Side View</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Left Side View (Barrier face to front seat backs)</td>
<td>1230</td>
<td>-4890</td>
<td>1235</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>Left Side View (Driver)</td>
<td>1690</td>
<td>-6385</td>
<td>1260</td>
<td>35</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>Left Side View (B-post aimed toward center of steering wheel)</td>
<td>6205</td>
<td>-5575</td>
<td>2085</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>Left Side View (Steering Column)</td>
<td>1395</td>
<td>-5105</td>
<td>1445</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>Left Side View (Steering Column)</td>
<td>1420</td>
<td>-5095</td>
<td>990</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>Right Side View (Overall)</td>
<td>1845</td>
<td>6420</td>
<td>1280</td>
<td>19</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>Right Side View (Passenger)</td>
<td>1460</td>
<td>6665</td>
<td>1400</td>
<td>35</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>Right Side View (Angle)</td>
<td>6130</td>
<td>5335</td>
<td>2085</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>Right Side View (Front door)</td>
<td>1120</td>
<td>5050</td>
<td>1320</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>11</td>
<td>Front View Windshield</td>
<td>-285</td>
<td>0</td>
<td>2370</td>
<td>12.5</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>Front View Driver</td>
<td>-140</td>
<td>-375</td>
<td>2205</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>13</td>
<td>Front View Passenger</td>
<td>-150</td>
<td>515</td>
<td>2210</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>Overhead Barrier Impact View</td>
<td>1320</td>
<td>0</td>
<td>5050</td>
<td>19</td>
<td>1000</td>
</tr>
<tr>
<td>15</td>
<td>Pit Camera Engine View</td>
<td>1365</td>
<td>0</td>
<td>-3150</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>16</td>
<td>Pit Camera Fuel Tank View</td>
<td>3425</td>
<td>0</td>
<td>-3150</td>
<td>24</td>
<td>1000</td>
</tr>
</tbody>
</table>

*COORDINATES:
+X - forward of impact plane
+Y - right of monorail centerline
+Z - above ground level
CAMERA POSITIONS FOR FMVSS 208

- CONCRETE PAD
- COVERED PHOTO PIT
- TOW ROAD
- MONORAIL
- CONCRETE BARRIER
- REAL TIME CAMERA
- LEFT SIDE VIEW
- TOP VIEW

Numbers 1 through 16 indicate the positions of the cameras according to FMVSS 208 standards.
DATA SHEET 36
APPENDIX G
DUMMY POSITIONING PROCEDURES
FOR 5th% DRIVER TEST DUMMY CONFORMING TO SUBPART O OF PART 572

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Joe Fleck
NHTSA No.: C60503
Test Date: 7/18/06

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: _X_ 32 to 40 kmph | __ 0 to 48 kmph | __ 0 to 56 kmph
DRIVER DUMMY: _X_ 5th Female | __ 50th Male
PASSENGER DUMMY: _X_ 5th Female | __ 50th Male

1. Using the markings made from data sheet 14.3 (If not done previously or steering repairs have been made, complete data sheet 14.3 at this time.) to position the steering controls in the mid-position or if applicable next lowest detent position. (S16.2.9)

2. Place the SCRP in the full rearward, mid-height position, and mid-seat cushion angle, determined during the completion of Data Sheet 14.1. (S16.3.2.1.1)

3. If the vehicle has an adjustable accelerator pedal, place it in the full forward position. (S16.3.2.2.1)
 X N/A accelerator pedal not adjustable

4. Fully recline the seat back. (S16.3.2.1.2)
 __ N/A seat back not adjustable.

5. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.2.1.2)

6. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion markings as determined in Data Sheet 14.1. (S16.3.2.1.3 and S16.3.2.1.4)

7. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.2.1.5)

8. Set the angle between the legs and the thighs to 120 degrees. (S16.3.2.1.6)

9. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches) Center the knee separation with respect to the longitudinal seat cushion marking as determined Data Sheet 14.1. (S16.3.2.1.6)
 Record Knee Separation __160__

10. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.2.1.6)
 __Pelvis contacted seat back.
 X Calves contacted seat cushion.
11. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three time. (S16.3.2.1.7)

12. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.2.1.8)

13. Position the right foot until the foot is in line with a longitudinal vertical plane passing through the center of the accelerator pedal. Maintain the leg and thigh in a vertical plane. (S16.3.2.1.8)

14. Rotate the left leg and thigh laterally to equalize the distance between each knee and the longitudinal seat cushion marking as determined in Data Sheet 14.1. (S16.3.2.1.8)

15. Attempt to return the seat to the foremost fore-aft position, mid-height, and seat cushion mid-angle as determined in Data Sheet 14.2. The foot may contact and depress the accelerator and/or change the angle of the foot with respect to the leg. (S16.3.2.1.8)

16. If either of the dummy’s legs contact the steering wheel, move the steering wheel up the minimum amount required to avoid contact. If the steering wheel is not adjustable separate the knees the minimum required to avoid contact. (S16.3.2.1.8)

17. If the left foot interferes with the clutch or brake pedals, rotate the left foot about the leg to provide clearance. If this is not sufficient, rotate the thigh outboard at the hip the minimum amount required for clearance. (S16.3.2.1.8)

18. Continue to move the seat. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14.1 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)
19. If the steering wheel was repositioned in step 16, return the steering wheel to the original position. If the steering wheel contacts the dummy before reaching the original position, position the wheel until a maximum clearance of 5mm (.2 inches) is achieved, or the steering wheel is in the closest detent position that does not cause dummy contact. (S16.3.2.1.8)

N/A Steering wheel was not repositioned.
Original position achieved.
Dummy contact. Clearance set at maximum of 5mm
Measured Clearance
Dummy Contact. Steering wheel set at nearest detent position.
Steering wheel position detent positions upward of original position.
(Original position is position zero)

20. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If the head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.2.1.9)

Head Level Achieved. (Check all that apply)
Head leveled using the adjustable seat back
Head leveled using the neck bracket.
Head Angle 0.3 degrees

Head Level NOT Achieved. (Check all that apply)
Head adjusted using the adjustable seat back
Head adjusted using the neck bracket.
Head Angle degrees

21. Verify the pelvis is not interfering with the seat bight. (S16.3.2.1.9)

No interference
Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

22. Verify the dummy abdomen is properly installed. (S16.3.2.1.9)

Abdomen still seated properly into dummy
Abdomen was adjusted because it was not seated properly into dummy

23. Head Angle
N/A, neither the pelvis nor the abdomen were adjusted.

23.1 Head still level (Go to 24)

23.2 Head level adjusted
Head Level Achieved. (Check all that apply)
Head leveled using the adjustable seat back
Head leveled using the neck bracket.
Head Angle degrees

Head Level NOT Achieved. (Check all that apply)
Head level adjusted using the adjustable seat back
Head level adjusted using the neck bracket.
Head Angle degrees
24. If the dummy torso contacts the steering wheel while performing step 20, reposition the steering wheel in the following order to eliminate contact. (S16.3.2.1.9)

N/A, No dummy torso contact with the steering wheel.

24.1 Adjust telescoping mechanism.

N/A No telescoping adjustment.
Adjustment performed (fill in appropriate change)
Steering wheel moved ____ detent positions in the forward direction.
Steering wheel moved ____ mm in the forward direction.

24.2 Adjust tilt mechanism.

N/A No tilt adjustment.
No adjustment performed.
Adjustment performed.
Steering wheel moved ____ detent positions Upward/Downward.
(circle one)
Steering wheel moved ____ degrees Upward/Downward

24.3 Adjust Seat in the aft direction.

No Adjustment performed.
Seat moved aft ____ mm from original position.
Seat moved aft ____ detent positions from the original position.

25. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the specified range because the head will not be level or because the dummy will have need major repositioning, adjust the pelvis as closely as possible to the angle range, but keep the head level. (S16.3.2.1.11)

Pelvic angle set to 20.0 degrees ± 2.5 degrees.
Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.
Record the pelvic angle. ____22.3____ degrees

26. Check the dummy for contact with the interior after completing adjustments. (S16.3.2.1.12)

No contact.
Dummy in contact with interior.
Seat moved aft ____ mm from the previous position.
Seat moved aft ____ detent positions from the previous position.

27. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.2.1.12)

N/A, Seat already at foremost position.
Clearance unchanged. No adjustments required.
Additional clearance available
Seat moved Forward ____ mm from the previous position.
Seat moved Forward ____ detent positions from the previous position.

28. Driver’s foot positioning, right foot. Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan proceed to step 29 otherwise, proceed to step 30. (S16.3.2.2.1)
29. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 29.6 shall be completed in all cases. (S16.3.2.2.1(a))

29.1 With the rear of the heel contacting the floor pan, move the foot forward until pedal contact occurs or the foot is at the full forward position.

29.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position.

29.3 Extend the leg, allowing the heel to lose contact with the floor until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

29.4 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

29.5 Align the centerline of the foot with the vertical-longitudinal plane passing through the center of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)

29.6 Record foot position

- Pedal Contact achieved. Contact occurred at step **29.1**.
- Heel contacts floor pan
 - Heel set _____ mm from floor pan.
- Pedal Contact not achieved. Heel set _____ mm from the floor pan.
FIGURE G1

30. Perform the following steps until either all steps are completed, or the foot contacts the accelerator pedal. Step 30.5 shall be completed in all cases.

30.1 Extend the leg until the foot contacts the pedal. Do not raise the toe of the foot higher than the top of the accelerator pedal. If the foot does not contact the pedal, proceed to the next step. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.2 & S16.3.2.2.3)

30.2 If the vehicle has an adjustable accelerator pedal, move the pedals rearward until pedal contact occurs or the pedals reach the full rearward position. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.1(b) & S16.3.2.2.3)

N/A No pedal adjustment

30.3 Angle the foot to achieve contact between the foot and the pedal. If the foot does not contact the pedal, return the foot to the perpendicular orientation. If pedal contact does occur, place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.2 & S16.3.2.2.3)

30.4 Align the centerline of the foot in the same horizontal plane as the centerline of the accelerator pedal. Place a tapered foam block as shown in Figure G1 under the heel with the shallow part of the taper facing forward. (S16.3.2.2.3)
30.5 Record foot position

- Pedal Contact achieved. Contact occurred at step ________.
- Heel set _____ mm from floor pan.
- Pedal Contact not achieved. Heel set _____ mm from the floor pan.

X 31. Driver’s foot positioning, left foot.

X 31.1 Place the foot perpendicular to the leg and determine if the heel contacts the floor pan at any leg position. If the heel contacts the floor pan proceed to step 31.2, otherwise position the leg as perpendicular to the thigh as possible with the foot parallel to the floor pan. (S16.2.2.6)

X 31.2 Place the foot on the toe board with the heel resting on the floor pan as close to the intersection of the floor pan and the toe board as possible. Adjust the angle of the foot if necessary to contact the toe board. If the foot will not contact the toe board, set the foot perpendicular to the leg, and set the heel on the floor pan as far forward as possible. Avoid contact with the brake pedal, clutch pedal, wheel well projection, and footrest. To avoid this contact use the following three manipulations in the order listed, with each subsequent option incorporating the previous, until contact is avoided: rotate the foot about the lower leg (abduction/adduction), plantar flex the foot, rotate the leg outboard about the hip. Movement should be the minimum amount necessary. If it is not possible to avoid all foot contact, give priority to avoiding brake or clutch pedal contact. (S16.2.2.4 & S16.2.2.5 & S16.2.2.7)

- No contact
 - Foot rotated about the leg (abduction/adduction)
 - Foot rotated about the leg, and foot plantar flexed
 - Foot rotated about the leg, foot plantar flexed, and the leg rotated about the hip.

X 31.3 Record foot position.

- Heel does not contact floor pan.
- Heel on floor pan and foot on toe board.
 - Heel on floor pan and foot not on toe board.

X 32. Driver arm/hand positioning.

X 32.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.2.3.1)

X 32.2 Place the palms of the dummy in contact with the outer part of the steering wheel rim at its horizontal centerline with the thumbs over the steering wheel rim. (S16.3.2.3.2)

X 32.3 If it is not possible to position the thumbs inside the steering wheel rim at its horizontal centerline, then position them above and as close to the horizontal centerline of the steering wheel rim as possible. (S16.3.2.3.3)

X 32.4 Lightly tape the hands to the steering wheel rim so that if the hand of the test dummy is pushed upward by a force of not less than 9 N (2 lb) and not more than 22 N (5 lb), the tape releases the hand from the steering wheel rim. S16.3.2.3.4

X 33. Adjustable head restraints

- N/A, there is no head restraint adjustment
__33.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 34.

__33.2 Adjust each head restraint vertically so that the mid-horizontal plane determined in Data Sheet 14.1 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

X 33.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)
 N/A midpoint position attained in previous step
 X Headrest set at nearest detent below the head CG

__33.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

__34. Driver and passenger manual belt adjustment (for tests conducted with a belted dummy). (S16.3.5) UNBELTED TEST

__34.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female. (S16.3.5.1) This information will be supplied by the COTR.
 Manufacturer’s specified position ________________________________
 Actual Position__

__34.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

__34.3 Ensure that the dummy’s head remains as level as possible. (S16.3.5.3)

__34.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

I certify that I have read and performed each instruction.

Signature: __________________________ Date: 7/18/06
APPENDIX G

DUMMY POSITIONING PROCEDURES

FOR 5th% PASSENGER TEST DUMMY CONFORMING TO SUBPART O OF PART 572

Test Vehicle: 2006 Mercedes E350 NHTSA No.: C60503
Test Program: FMVSS 208 Compliance Test Date: 7/18/06
Test Technician: Eric Peschman

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED:
<table>
<thead>
<tr>
<th></th>
<th>X 32 to 40 kmph</th>
<th></th>
<th>0 to 48 kmph</th>
<th></th>
<th>0 to 56 kmph</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVER DUMMY:</td>
<td>5th Female</td>
<td>50th Male</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>5th Female</td>
<td>50th Male</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Check this item ONLY if it applies to this vehicle.)

The passenger seat adjustments are controlled by the adjustments made to the driver’s seat. Therefore, positioning of the passenger dummy is made simultaneously with the driver dummy. Adjustments made to the seat to position the driver will over ride any adjustments that would normally be made to position the passenger. (S16.2.10.3)

1. Place the SCRP in the full rearward, mid-height position, and mid-seat cushion angle, determined during the completion of Data Sheet 14.1. (S16.3.3.1.1)

2. Fully recline the seat back. (S16.3.3.1.2)
 N/A seat back not adjustable.

3. Place the dummy in the seat with the legs at an angle of 120 degrees to the thighs. The calves should not be touching the seat cushion. (S16.3.3.1.2)

4. Position the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion marking that was determined in Data Sheet 14.1. (S16.3.3.1.3 and S16.3.3.1.4)

5. Hold down the dummy’s thighs and push rearward on the upper torso to maximize the pelvic angle. (S16.3.3.1.5)

6. Set the angle between the legs and the thighs to 120 degrees. (S16.3.3.1.6)

7. Set the transverse distance between the centers of the front of the knees at 160 to 170 mm. (6.3 to 6.7 inches). Center the knee separation with respect to the longitudinal seat cushion marking that was determined Data Sheet 14.1. (S16.3.3.1.6)
 Record Knee Separation 165

8. Push rearward on the dummy’s knees until the pelvis contacts the seat back, or the backs of the calves contact the seat cushion, whichever occurs first. (S16.3.3.1.6)
 X Pelvis contacted seat back.
 Calves contacted seat cushion.

9. Gently rock the upper torso ± 5 degrees (approximately 51 mm (2 inches)) side-to-side three times. (S16.3.3.1.7)
10. If needed, extend the legs until the feet do not contact the floor pan. The thighs should be resting on the seat cushion. (S16.3.3.1.8)

11. Use seat controls to line up the seat markings determined during the completion of Data Sheet 14.1 to set the foremost fore-aft position, mid-height position and the seat cushion mid-angle. If the dummy contacts the interior move the seat rearward until a maximum clearance of 5 mm (0.2 inches) is achieved or the seat is in the closest detent position that does not cause dummy contact. (S16.3.3.1.8)

Foremost, mid-height position and the seat cushion mid-angle reached

_____ Dummy contact. Clearance set at maximum of 5mm

 Measured Clearance ________________

_____ Dummy Contact. Seat set at nearest detent position.

 Seat position ____ detent positions rearward of foremost
 (foremost is position zero)

12. If the seat back is adjustable, rotate the seat back forward while holding the thighs in place. Continue rotating the seat back forward until the transverse instrument platform of the dummy head is level ± 0.5 degrees. If head cannot be leveled using the seat back adjustment, or the seat back is not adjustable, use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, adjust the head as closely as possible to the ± 0.5 degree range. (S16.3.3.1.9 and S16.3.3.1.10)

 (Check All That Apply)

 _____ Seat back not adjustable
 _____ Seat back not independent of driver side seat back

X Head Level Achieved. (Check all that apply)

 X Head leveled using the adjustable seat back

 _____ Head leveled using the neck bracket.

 Head Angle ____ 0.2 ____ degrees

_____ Head Level NOT Achieved. (Check all that apply)

 _____ Head adjusted using the adjustable seat back

 _____ Head adjusted using the neck bracket.

 Head Angle ____________ degrees

13. Verify the pelvis is not interfering with the seat bight. (S16.3.3.1.9)

 X No interference

 _____ Pelvis moved forward the minimum amount so that it is not caught in the seat bight.

14. Verify the dummy abdomen is properly installed. (S16.3.3.1.9)

 X Abdomen still seated properly into dummy

 _____ Abdomen was adjusted because it was not seated properly into dummy

15. Head Angle

 X N/A, neither the pelvis nor the abdomen were adjusted.

15.1 Head still level (Go to 16)
15.2 Head level adjusted

__Head Level Achieved. (Check all that apply)
 __Head leveled using the adjustable seat back
 __Head leveled using the neck bracket.
 Head Angle ____________ degrees

__Head Level NOT Achieved. (Check all that apply)
 __Head adjusted using the adjustable seat back
 __Head adjusted using the neck bracket.
 Head Angle ____________ degrees

X 16. Measure and set the pelvic angle using the pelvic angle gage TE-2504. The pelvic angle should be 20.0 degrees ± 2.5 degrees. If the pelvic angle cannot be set to the specified range because the head will not be level or because the dummy will have need major repositioning, adjust the pelvis as closely as possible to the angle range, but keep the head level.

 X Pelvic angle set to 20.0 degrees ± 2.5 degrees.
 __Pelvic angle of 20.0 degrees not achieved, the angular difference was minimized.

 X Record the pelvic angle. ____18.7____ degrees

X 17. Check the dummy for contact with the interior after completing adjustments.

 X No contact.
 __Dummy in contact with interior.
 __Seat moved aft ___ mm from the previous position.
 __Seat moved aft ___ detent positions from the previous position.

X 18. Verify the transverse instrument platform of the dummy head is level +/- 0.5 degrees. Use the lower neck bracket adjustment to level the head. If a level position cannot be achieved, minimize the angle. (S16.3.3.1.9, S16.3.3.1.10, and S16.3.3.1.11)

 X Head Level Achieved
 Head Angle ____________ degrees
 __Head Level NOT Achieved.
 Head Angle ____________ degrees

X 19. Check the dummy to see if additional interior clearance is obtained, allowing the seat to be moved forward. (S16.3.3.1.12)

 __N/A Bench Seat
 X N/A Seat already at full forward position.
 __Clearance unchanged. No adjustments required.
 __Additional clearance available
 __Seat moved Forward ___ mm from the previous position.
 __Seat moved Forward ___ detent positions from the previous position.
 __Seat moved Forward, Full Forward position reached.

X 20. Passenger foot positioning. (Indicate final position achieved) (S16.3.3.2)

 __20.1 Place feet flat on the toe board; OR (S16.3.3.2.1)

 X 20.2 If the feet cannot be placed flat on the toe board, set the feet perpendicular to the lower leg, and rest the heel as far forward on the floor pan as possible; OR (S16.3.3.2.2)

 __20.3 If the heels do not touch the floor pan, set the legs as perpendicular to the thighs as possible and set the feet parallel to the floor pan. (S16.3.3.2.2)
21. Passenger arm/hand positioning. (S16.3.3.3)

21.1 Place the dummy’s upper arms adjacent to the torso with the arm centerlines as close to a vertical longitudinal plane as possible. (S16.3.3.3.1)

21.2 Place the palms of the dummy in contact with the outer part of the thighs (S16.3.3.3.2)

21.3 Place the little fingers in contact with the seat cushion. (S16.3.3.3.3)

22. Adjustable head restraints (S16.3.4)

N/A, there is no head restraint adjustment

22.1 If the head restraint has an automatic adjustment, leave it where the system positions the restraint after the dummy is placed in the seat. (S16.3.4.1) Go to 23.

22.2 Adjust each head restraint vertically so that the horizontal plane determined in Data Sheet 14.1 is aligned with the center of gravity (CG) of the dummy head. (S16.3.4.3)

22.3 If the above position is not attainable, move the vertical center of the head restraint to the closest detent below the center of the head CG. (S16.3.4.3)

N/A midpoint position attained in previous step

Headrest set at nearest detent below the head CG

22.4 If the head restraint has a fore and aft adjustment, place the restraint in the foremost position or until contact with the head is made, whichever occurs first. (S16.3.4.4)

23. Manual belt adjustment (for tests conducted with a belted dummy) S16.3.5

N/A, Unbelted test

23.1 If an adjustable seat belt D-ring anchorage exists, place it in the manufacturer’s design position for a 5th percentile adult female. This information will be supplied by the COTR. (S16.3.5.1)

Manufacturer’s specified position ________________________________

Actual Position__

23.2 Place the Type 2 manual belt around the test dummy and fasten the latch. (S16.3.5.2)

23.3 Ensure that the dummy’s head remains as level as possible. (S16.3.5.3)

23.4 Remove all slack from the lap belt. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this operation four times. Apply a 9 N (2 lbf) to 18 N (4 lbf) tension load to the lap belt. If the belt system is equipped with a tension-relieving device, introduce the maximum amount of slack into the upper torso belt that is recommended by the manufacturer. If the belt system is not equipped with a tension-relieving device, allow the excess webbing in the shoulder belt to be retracted by the retractive force of the retractor. (S16.3.5.4)

I certify that I have read and performed each instruction.

Signature: ________________________ Date: 7/18/06
DATA SHEET 37

DUMMY MEASUREMENTS

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Eric Peschman</td>
</tr>
<tr>
<td>NHTSA No.:</td>
<td>C60503</td>
</tr>
<tr>
<td>Test Date:</td>
<td>7/18/06</td>
</tr>
</tbody>
</table>

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Wheel Hub</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof</td>
</tr>
<tr>
<td>KDA</td>
<td>Knee to Dash Angle</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
</tr>
<tr>
<td>NA</td>
<td>Nose to Rim Angle</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
</tr>
<tr>
<td>TA</td>
<td>Tibial Angle</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD</td>
<td>Arm to Door</td>
</tr>
<tr>
<td>HD</td>
<td>H-Point to Door</td>
</tr>
<tr>
<td>HR</td>
<td>Head to Side Header</td>
</tr>
<tr>
<td>HS</td>
<td>Head to Side Window</td>
</tr>
<tr>
<td>KK</td>
<td>Knee to Knee</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-Point (Y Axis)</td>
</tr>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Wheel Hub</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof</td>
</tr>
<tr>
<td>KDA</td>
<td>Knee to Dash Angle</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
</tr>
<tr>
<td>NA</td>
<td>Nose to Rim Angle</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle</td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
</tr>
<tr>
<td>TA</td>
<td>Tibial Angle</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
</tr>
</tbody>
</table>

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman
NHTSA No.: C60503
Test Date: 7/18/06
DATA SHEET 37

DUMMY MEASUREMENTS

Test Vehicle: 2006 Mercedes E350
NHTSA No.: C60503
Test Program: FMVSS 208 Compliance
Test Date: 7/18/06
Test Technician: Eric Peschman

TEST DUMMY POSITION MEASUREMENTS

<table>
<thead>
<tr>
<th>Code</th>
<th>Measurement Description</th>
<th>Driver SN 505</th>
<th>Passenger SN 510</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length (mm)</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
<td>30.2</td>
<td>2.9</td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
<td>21.6</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle (On Headrest)</td>
<td>1.0</td>
<td>2.9</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof (Z)</td>
<td>182</td>
<td>165</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
<td>274</td>
<td>255</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
<td>546</td>
<td>518</td>
</tr>
<tr>
<td>HR</td>
<td>Head to Side Header (Y)</td>
<td>254</td>
<td>227</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
<td>277</td>
<td>0.4</td>
</tr>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
<td>414</td>
<td>440</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Hub</td>
<td>207</td>
<td>4.4</td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
<td>93</td>
<td>0.0</td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
<td>109</td>
<td>112</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
<td>84</td>
<td>118</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
<td>22.3</td>
<td>18.7</td>
</tr>
<tr>
<td>TA</td>
<td>Tibia Angle</td>
<td>46.5</td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>Knee to Knee (Y)</td>
<td>214</td>
<td>225</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
<td>694</td>
<td>664</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
<td>416</td>
<td>425</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
<td>399</td>
<td>372</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-Point (Y)</td>
<td>282</td>
<td>282</td>
</tr>
<tr>
<td>HS</td>
<td>Head to Side Window</td>
<td>359</td>
<td>352</td>
</tr>
<tr>
<td>HD</td>
<td>H-Point to Door (Y)</td>
<td>216</td>
<td>224</td>
</tr>
<tr>
<td>AD</td>
<td>Arm to Door (Y)</td>
<td>154</td>
<td>165</td>
</tr>
<tr>
<td>AA</td>
<td>Ankle to Ankle</td>
<td>272</td>
<td>185</td>
</tr>
</tbody>
</table>
SEAT BELT POSITIONING DATA

DUMMY'S CENTERLINE

SHOULDER BELT PORTION

TBI

'D' RING

LAP BELT PORTION

PBU - Top surface of reference to belt upper edge mm

PBL - Top surface of reference to belt lower edge mm

1/8" THICK ALUMINUM PLATE

BUCKLE ASSEMBLY

MALE BLADE

EMERGENCY LOCKING RETRACTORY

OUTBOARD ANCHORAGE

INBOARD ANCHORAGE

FLOORPAN

FRONT VIEW OF DUMMY

SEAT BELT POSITIONING MEASUREMENTS

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Units</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU - Top surface of reference to belt upper edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PBL - Top surface of reference to belt lower edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
DATA SHEET 38
CRASH TEST

Test Vehicle: 2006 Mercedes E350
Test Program: FMVSS 208 Compliance
Test Technician: Eric Peschman

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED: X 32 to 40 kmph
 ___ 0 to 48 kmph
 ____ 0 to 56 kmph
DRIVER DUMMY: X 5th female
PASSENGER DUMMY: X 5th female

1. Vehicle underbody painted
2. The speed measuring devices are in place and functioning.
3. The speed measuring devices are _10_ m from the barrier (spec. 1.5m) and _30_ cm from
 the barrier (spec. is 30 cm)
4. Convertible top is in the closed position.
5. Instrumentation and wires are placed so the motion of the dummies during impact is not
 affected.
6. Tires inflated to pressure on tire placard or if it does not have a tire placard because it is
 not a passenger car, then inflated to the tire pressure specified in the owner information.
 196 kpa front left tire
 196 kpa front right tire
 210 kpa rear left tire
 210 kpa rear right tire
7. Time zero contacts on barrier in place.
8. Pre test zero and shunt calibration adjustments performed and recorded
9. Dummy temperature meets requirements of section 12.2 of the test procedure.
10. Vehicle hood closed and latched
11. Transmission placed in neutral
12. Parking brake off
13. Ignition in the ON position
14. Doors closed and latched but not locked
15. Posttest zero and shunt calibration checks performed and recorded
16. Actual test speed 39.8 kmph
17. Vehicle rebound from the barrier _132_ cm
18. Describe whether the doors open after the test and what method is used to open the doors.
 X Left Front Door: Door remained closed and latched; Door opened without tools
 X Right Front Door: Door remained closed and latched; Door opened without tools
 X Left Rear Door: Door remained closed and latched; Door opened without tools
 X Right Rear Door: Door remained closed and latched; Door opened without tools
19. Describe the contact points of the dummy with the interior of the vehicle.

Driver Dummy: Head to Air Bag and Headrest; Chest to Air Bag; Knees to Knee Bolster and Steering Column

Passenger Dummy: Head to Visor, Air Bag, and Headrest; Chest to Air Bag; Knees to Glove Box and Dash

REMARKS:

I certify that I have read and performed each instruction.

Signature:_________________________ Date: 7/18/06
DATA SHEET NO. 40

ACCIDENT INVESTIGATION DIVISION DATA

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
<th>NHTSA No.:</th>
<th>C60503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>7/18/06</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Nick Kosinski</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IMPACT ANGLE: Zero Degrees

BELTED DUMMIES (YES/NO): No

TEST SPEED:
- [X] 32 to 40 kmph
- [__] 0 to 48 kmph
- [__] 0 to 56 kmph

DRIVER DUMMY:
- [X] 5th female
- [__] 50th male

PASSENGER DUMMY:
- [X] 5th female
- [__] 50th male

Vehicle Year/Make/Model/Body Style:
- 2006 Mercedes E350 Passenger Car

VIN:
- WDBUF56J76A841487

Wheelbase:
- 2854 mm

Build Date:
- 06/05

Vehicle Size Category:
- 4

Test Weight:
- 1946.8 kg

Front Overhang:
- 800 mm

Overall Width:
- 1800 mm

Overall Length Center:
- 4803 mm

Accelerometer Data

<table>
<thead>
<tr>
<th>Location:</th>
<th>As per measurements on Data Sheet 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity:</td>
<td>>99.9%</td>
</tr>
</tbody>
</table>

Integration Algorithm:
- Trapezoidal

Vehicle Impact Speed:
- 39.8 kmph

Time of Separation:
- 133.2 ms

Velocity Change:
- 46.2 kmph
CRUSH PROFILE

Collision Deformation Classification: 12FDEW6
Midpoint of Damage: Vehicle Longitudinal Centerline
Damage Region Length (mm): 1265
Impact Mode: Frontal Barrier

<table>
<thead>
<tr>
<th>No.</th>
<th>Measurement Description</th>
<th>Units</th>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Crush zone 1 at left side</td>
<td>mm</td>
<td>4726</td>
<td>4440</td>
<td>286</td>
</tr>
<tr>
<td>C2</td>
<td>Crush zone 2 at left side</td>
<td>mm</td>
<td>4750</td>
<td>4431</td>
<td>319</td>
</tr>
<tr>
<td>C3</td>
<td>Crush zone 3 at left side</td>
<td>mm</td>
<td>4787</td>
<td>4426</td>
<td>361</td>
</tr>
<tr>
<td>C4</td>
<td>Crush zone 4 at right side</td>
<td>mm</td>
<td>4786</td>
<td>4446</td>
<td>340</td>
</tr>
<tr>
<td>C5</td>
<td>Crush zone 5 at right side</td>
<td>mm</td>
<td>4753</td>
<td>4461</td>
<td>292</td>
</tr>
<tr>
<td>C6</td>
<td>Crush zone 6 at right side</td>
<td>mm</td>
<td>4724</td>
<td>4465</td>
<td>259</td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 7/18/06
DATA SHEET 41
WINDSHIELD MOUNTING (FMVSS 212)

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Nick Kosinski</td>
</tr>
<tr>
<td>NHTSA No.:</td>
<td>C60503</td>
</tr>
<tr>
<td>Test Date:</td>
<td>7/18/06</td>
</tr>
</tbody>
</table>

IMPACT ANGLE: Zero Degrees

BELTED DUMMIES (YES/NO): No

TEST SPEED:
- X 32 to 40 kmph
- 0 to 48 kmph
- 0 to 56 kmph

DRIVER DUMMY:
- X 5th female
- 50th male

PASSENGER DUMMY:
- X 5th female
- 50th male

1. Pre-Crash
 1.1 Describe from visual inspection how the windshield is mounted and describe any trim material.
 - Retained with glue
 - Rubber trim

1.2 Mark the longitudinal centerline of the windshield

1.3 Measure pre-crash A, B, and C for the left side and record in the chart below.

1.4 Measure pre-crash C, D, and E for the right side and record in the chart below.

1.5 Measure from the edge of the retainer or molding to the edge of the windshield.
 - Dimension G (mm): 7 mm

2. Post Crash
 2.1 Can a single thickness of copier type paper (as small a piece as necessary) slide between the windshield and the vehicle body?
 - X No – Pass. Skip to the table of measurements, complete it by repeating the pre-crash measurements in the post crash column, and calculate the retention percentage, which will be 100%.
 - Yes, go to 2.2

2.2 Visibly mark the beginning and end of the portions of the periphery where the paper slides between the windshield and the vehicle body.

2.3 Measure and record post-crash A, B, C, D, E, and F such that the measurements do not include any of the parts of the windshield where the paper slides between the windshield and the vehicle body.

2.4 Calculate and record the percent retention for the right and left side of the windshield.

2.5 Is total right side percent retention less than 75%?
 - Yes, Fail
 - No, Pass

2.6 Is total left side percent retention less than 75%?
 - Yes, Fail
 - No, Pass
WINDSHIELD RETENTION MEASUREMENTS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-Crash (mm)</th>
<th>Post-Crash (mm)</th>
<th>Percent Retention (Post-Test + Pre-Crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>588</td>
<td>588</td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td>760</td>
<td>760</td>
<td>100%</td>
</tr>
<tr>
<td>C</td>
<td>783</td>
<td>783</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2131</td>
<td>2131</td>
<td>100%</td>
</tr>
<tr>
<td>Right Side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>588</td>
<td>588</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>760</td>
<td>760</td>
<td>100%</td>
</tr>
<tr>
<td>F</td>
<td>783</td>
<td>783</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2131</td>
<td>2131</td>
<td>100%</td>
</tr>
</tbody>
</table>

Indicate area of mounting failure. NONE

FRONT VIEW OF WINDSHIELD

INDICATE WIDTH OF MOLDING

ZERO POINT (0,0)

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 7/18/06
DATA SHEET 42

WINDSHIELD ZONE INTRUSION (FMVSS 219)

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2006 Mercedes E350</th>
<th>NHTSA No.:</th>
<th>C60503</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>7/18/06</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Nick Kosinski</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>X 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>X 5th female</td>
</tr>
</tbody>
</table>

1. Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg on the instrument panel so that it is simultaneously touching the instrument panel and the windshield. (571.219 S6.1(a))

2. Roll the sphere from one side of the windshield to the other while marking on the windshield where the sphere contacts the windshield. (571.219 S6.1(b))

3. From the outermost contactable points on the windshield draw a horizontal line to the edges of the windshield. (571.219 S6.1(b))

4. Draw a line on the inner surface of the windshield that is 13 mm below the line determined in items 2 and 3

5. After the crash test, record any points where a part of the exterior of the vehicle has marked, penetrated, or broken the windshield.

Provide all dimensions necessary to reproduce the protected area.
WINDSHIELD DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm</td>
<td>1176</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>510</td>
</tr>
<tr>
<td>C</td>
<td>mm</td>
<td>1566</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>760</td>
</tr>
<tr>
<td>E</td>
<td>mm</td>
<td>504</td>
</tr>
<tr>
<td>F</td>
<td>mm</td>
<td>523</td>
</tr>
</tbody>
</table>

AREA OF PROTECTED ZONE FAILURES:

B. Provide coordinates of the area that the protected zone was penetrated more than 0.25 inches by a vehicle component other than one which is normally in contact with the windshield.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

C. Provide coordinates of the area beneath the protected zone template that the inner surface of the windshield was penetrated by a vehicle component.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 7/18/06
DATA SHEET 43
FUEL SYSTEM INTEGRITY (FMVSS 301)

Test Vehicle: 2006 Mercedes E350 NHTSA No.: C60503
Test Program: FMVSS 208 Compliance Test Date: 7/18/06
Test Technician: Eric Peschman

TYPE OF IMPACT: 25 mph Unbelted Flat Frontal

Stoddard Solvent Spillage Measurements

A. From impact until vehicle motion ceases: 0.0 grams
 (Maximum Allowable = 28 grams)
B. For the 5 minute period after motion ceases: 0.0 grams
 (Maximum Allowable = 142 grams)
C. For the following 25 minutes: 0.0 grams
 (Maximum Allowable = 28 grams/minute)
D. Spillage: NONE

REMARKS: NO SPILLAGE
1. The specified fixture rollover rate for each 90° of rotation is 60 to 180 seconds.
2. The position hold time at each position is 300 seconds (minimum).
3. Details of Stoddard Solvent spillage locations: **None**

<table>
<thead>
<tr>
<th>Test Phase</th>
<th>Rotation Time (sec.)</th>
<th>Hold Time (sec.)</th>
<th>Spillage (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 90°</td>
<td>120</td>
<td>305</td>
<td>0.0</td>
</tr>
<tr>
<td>90° to 180°</td>
<td>116</td>
<td>305</td>
<td>0.0</td>
</tr>
<tr>
<td>180° to 270°</td>
<td>110</td>
<td>305</td>
<td>0.0</td>
</tr>
<tr>
<td>270° to 360°</td>
<td>115</td>
<td>305</td>
<td>0.0</td>
</tr>
</tbody>
</table>
APPENDIX A

CRASH TEST DATA
TABLE OF DATA PLOTS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Driver Head X Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>2</td>
<td>Driver Head Y Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>3</td>
<td>Driver Head Z Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>4</td>
<td>Driver Head Resultant Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>5</td>
<td>Driver Head X Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>6</td>
<td>Driver Head Y Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>7</td>
<td>Driver Head Z Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>8</td>
<td>Driver Neck Force X vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>9</td>
<td>Driver Neck Force Y vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>10</td>
<td>Driver Neck Force Z vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>11</td>
<td>Driver Neck Force Resultant vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>12</td>
<td>Driver Neck Moment X vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>13</td>
<td>Driver Neck Moment Y vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>14</td>
<td>Driver Neck Moment Z vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>15</td>
<td>Driver Neck Moment Resultant vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>16</td>
<td>Driver Chest X Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>17</td>
<td>Driver Chest Y Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>18</td>
<td>Driver Chest Z Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>19</td>
<td>Driver Chest Resultant Acceleration vs. Time</td>
<td>A-5</td>
</tr>
<tr>
<td>20</td>
<td>Driver Chest X Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>21</td>
<td>Driver Chest Y Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>22</td>
<td>Driver Chest Z Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>23</td>
<td>Driver Chest Displacement vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>24</td>
<td>Driver Left Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>25</td>
<td>Driver Right Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>26</td>
<td>Passenger Head X Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>27</td>
<td>Passenger Head Y Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>28</td>
<td>Passenger Head Z Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>29</td>
<td>Passenger Head Resultant Acceleration vs. Time</td>
<td>A-8</td>
</tr>
</tbody>
</table>
Figure No. 30. Passenger Head X Velocity vs. Time A-9
Figure No. 31. Passenger Head Y Velocity vs. Time A-9
Figure No. 32. Passenger Head Z Velocity vs. Time A-9
Figure No. 33. Passenger Neck Force X vs. Time A-10
Figure No. 34. Passenger Neck Force Y vs. Time A-10
Figure No. 35. Passenger Neck Force Z vs. Time A-10
Figure No. 36. Passenger Neck Force Resultant vs. Time A-10
Figure No. 37. Passenger Neck Moment X vs. Time A-11
Figure No. 38. Passenger Neck Moment Y vs. Time A-11
Figure No. 39. Passenger Neck Moment Z vs. Time A-11
Figure No. 40. Passenger Neck Moment Resultant vs. Time A-11
Figure No. 41. Passenger Chest X Acceleration vs. Time A-12
Figure No. 42. Passenger Chest Y Acceleration vs. Time A-12
Figure No. 43. Passenger Chest Z Acceleration vs. Time A-12
Figure No. 44. Passenger Chest Resultant Acceleration vs. Time A-12
Figure No. 45. Passenger Chest X Velocity vs. Time A-13
Figure No. 46. Passenger Chest Y Velocity vs. Time A-13
Figure No. 47. Passenger Chest Z Velocity vs. Time A-13
Figure No. 48. Passenger Chest Displacement vs. Time A-13
Figure No. 49. Passenger Left Femur Force vs. Time A-14
Figure No. 50. Passenger Right Femur Force vs. Time A-14
Figure No. 51. Driver Nij (N_{TF}) vs. Time A-15
Figure No. 52. Driver Nij (N_{TE}) vs. Time A-15
Figure No. 53. Driver Nij (N_{CF}) vs. Time A-15
Figure No. 54. Driver Nij (N_{CE}) vs. Time A-15
Figure No. 55. Passenger Nij (N_{TF}) vs. Time A-16
Figure No. 56. Passenger Nij (N_{TE}) vs. Time A-16
Figure No. 57. Passenger Nij (N_{CF}) vs. Time A-16
Figure No. 58. Passenger Nij (N_{CE}) vs. Time A-16
Figure No. 59. Driver Occipital Condyle Moment vs. Time A-17
Figure No. 60. Passenger Occipital Condyle Moment vs. Time A-17
Figure No. 61. Left Rear Seat Crossmember X Acceleration vs. Time A-18
Figure No. 62. Left Rear Seat Crossmember X Velocity vs. Time A-18
Figure No. 63. Right Rear Seat Crossmember X Acceleration vs. Time A-18
Figure No. 64. Right Rear Seat Crossmember X Velocity vs. Time A-18
Figure No. 65. Top of Engine X Acceleration vs. Time A-19
Figure No. 66. Top of Engine X Velocity vs. Time A-19
Figure No. 67. Bottom of Engine X Acceleration vs. Time A-19
Figure No. 68. Bottom of Engine X Velocity vs. Time A-19
Figure No. 69. Left Brake Caliper X Acceleration vs. Time A-20
Figure No. 70. Left Brake Caliper X Velocity vs. Time A-20
Figure No. 71. Right Brake Caliper X Acceleration vs. Time A-20
Figure No. 72. Right Brake Caliper X Velocity vs. Time A-20
Figure No. 73. Instrument Panel X Acceleration vs. Time A-21
Figure No. 74. Instrument Panel X Velocity vs. Time A-21
Figure No. 75. Trunk Z Acceleration vs. Time A-21
Figure No. 76. Trunk Z Velocity vs. Time A-21
Figure No. 77. Barrier Force – Upper Left vs. Time A-22
Figure No. 78. Barrier Force – Upper Center vs. Time A-22
Figure No. 79. Barrier Force – Upper Right vs. Time A-22
Figure No. 80. Barrier Force – Lower Left vs. Time A-23
Figure No. 81. Barrier Force – Lower Center vs. Time A-23
Figure No. 82. Barrier Force – Lower Right vs. Time A-23
Figure No. 83. Barrier Force – Sum Left vs. Time A-24
Figure No. 84. Barrier Force – Sum Center vs. Time A-24
Figure No. 85. Barrier Force – Sum Right vs. Time A-24
Figure No. 86. Barrier Force – Sum All vs. Time A-24
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 0.0 ms
Min: -18.0 kph
Tmin: 213.8 ms
CFC 180

DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 5.4 kph
Tmax: 251.9 ms
Min: -0.1 kph
Tmin: 34.2 ms
CFC 180

DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 2.6 kph
Tmax: 300.0 ms
Min: -6.0 kph
Tmin: 171.0 ms
CFC 180
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

- DRIVER NECK FX (N) vs TIME (ms)
 Max: 362.3 N
 Tmax: 76.9 ms
 Min: -212.1 N
 Tmin: 134.7 ms
 CFC 1000

- DRIVER NECK FY (N) vs TIME (ms)
 Max: 94.8 N
 Tmax: 76.8 ms
 Min: -50.8 N
 Tmin: 41.1 ms
 CFC 1000

- DRIVER NECK FZ (N) vs TIME (ms)
 Max: 812.3 N
 Tmax: 53.1 ms
 Min: -74.9 N
 Tmin: 144.0 ms
 CFC 1000

- DRIVER NECK FResultant (N) vs TIME (ms)
 Max: 828.2 N
 Tmax: 53.1 ms
 Min: 0.4 N
 Tmin: 0.0 ms
 CFC 1000
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)
Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

DRIVER NECK MX (Nm) vs TIME (ms)
Max: 4.9 Nm
Tmax: 42.6 ms
Min: -3.4 Nm
Tmin: 55.7 ms
CFC 600

DRIVER NECK MY (Nm) vs TIME (ms)
Max: 23.7 Nm
Tmax: 146.1 ms
Min: -10.5 Nm
Tmin: 42.3 ms
CFC 600

DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 1.0 Nm
Tmax: 33.6 ms
Min: -2.9 Nm
Tmin: 97.3 ms
CFC 600

DRIVER NECK MResultant (Nm) vs TIME (ms)
Max: 23.7 Nm
Tmax: 146.1 ms
Min: 0.0 Nm
Tmin: 0.0 ms
CFC 600
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

DRIVER CHEST X (G's) vs TIME (ms)
- Max: 3.9 G's
- Tmax: 122.7 ms
- Min: -38.9 G's
- Tmin: 79.5 ms
- CFC 180

DRIVER CHEST Y (G's) vs TIME (ms)
- Max: 1.4 G's
- Tmax: 300.0 ms
- Min: -8.4 G's
- Tmin: 60.5 ms
- CFC 180

DRIVER CHEST Z (G's) vs TIME (ms)
- Max: 4.5 G's
- Tmax: 89.7 ms
- Min: -2.8 G's
- Tmin: 56.4 ms
- CFC 180

DRIVER CHEST Resultant (G's) vs TIME (ms)
- Max: 39.2 G's
- Tmax: 79.5 ms
- Min: 0.0 G's
- Tmin: 0.8 ms
- CFC 180
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

2006 MERCEDES E350 (C60503)
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

MAX: 430.7 N
Tmax: 49.2 ms
Min: -2407.0 N
Tmin: 71.8 ms
CFC 600

Max: 110.9 N
Tmax: 120.6 ms
Min: -3969.2 N
Tmin: 68.2 ms
CFC 600
Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

2006 MERCEDES E350 (C60503)

PASSENGER HEAD X (G's) vs TIME (ms)
Max: 1.7 G's
Tmax: 17.7 ms
Min: -28.4 G's
Tmin: 50.1 ms
CFC 1000

PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 8.2 G's
Tmax: 36.5 ms
Min: -10.2 G's
Tmin: 41.6 ms
CFC 1000

PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 14.8 G's
Tmax: 50.4 ms
Min: -10.3 G's
Tmin: 117.4 ms
CFC 1000

PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 32.0 G's
Tmax: 50.3 ms
Min: 0.0 G's
Tmin: 0.2 ms
CFC 1000
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: 39.9 kph
Tmax: 32.3 ms
Min: -13.9 kph
Tmin: 245.4 ms
CFC 180

PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: 0.1 kph
Tmax: 37.5 ms
Min: -23.6 kph
Tmin: 237.2 ms
CFC 180

PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 21.7 kph
Tmax: 300.0 ms
Min: -0.5 kph
Tmin: 40.7 ms
CFC 180
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

PASSENGER NECK MX (Nm) vs TIME (ms)
- Max: 12.6 Nm
- Tmax: 115.0 ms
- Min: -13.6 Nm
- Tmin: 76.9 ms
- CFC 600

PASSENGER NECK MY (Nm) vs TIME (ms)
- Max: 89.6 Nm
- Tmax: 58.4 ms
- Min: -5.4 Nm
- Tmin: 275.5 ms
- CFC 600

PASSENGER NECK MZ (Nm) vs TIME (ms)
- Max: 17.1 Nm
- Tmax: 93.1 ms
- Min: -6.1 Nm
- Tmin: 180.4 ms
- CFC 600

PASSENGER NECK MResultant (Nm) vs TIME (ms)
- Max: 90.5 Nm
- Tmax: 58.4 ms
- Min: 0.0 Nm
- Tmin: 12.0 ms
- CFC 600
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

PASSENGER CHEST X (G's) vs TIME (ms)
Max: 2.0 G's
Tmax: 168.9 ms
Min: -28.3 G's
Tmin: 63.9 ms
CFC 180

PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 1.6 G's
Tmax: 56.9 ms
Min: -3.3 G's
Tmin: 85.7 ms
CFC 180

PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 3.1 G's
Tmax: 48.7 ms
Min: -5.5 G's
Tmin: 115.9 ms
CFC 180

PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 28.5 G's
Tmax: 63.9 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 180
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

PASSENGER CHEST X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 2.2 ms
Min: -13.7 kph
Tmin: 149.3 ms
CFC 180

PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.4 kph
Tmax: 61.0 ms
Min: -5.2 kph
Tmin: 158.4 ms
CFC 180

PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
Max: 0.8 kph
Tmax: 91.1 ms
Min: -5.1 kph
Tmin: 157.2 ms
CFC 180

PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.3 mm
Tmax: 38.2 ms
Min: -8.7 mm
Tmin: 62.8 ms
CFC 600
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

PASSENGER LEFT FEMUR (N) vs TIME (ms)
Max: 489.4 N
Tmax: 44.9 ms
Min: -3925.6 N
Tmin: 62.4 ms
CFC 600

PASSENGER RIGHT FEMUR (N) vs TIME (ms)
Max: 93.9 N
Tmax: 42.7 ms
Min: -4059.9 N
Tmin: 62.8 ms
CFC 600

No Valid Data After Approximately 84 msec.
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

Drv. nij (NTF) () vs TIME (ms)
Max: 0.2
Tmax: 57.2 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Drv. nij (NTE) () vs TIME (ms)
Max: 0.3
Tmax: 42.9 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Drv. nij (NCF) () vs TIME (ms)
Max: 0.2
Tmax: 145.4 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Drv. nij (NCE) () vs TIME (ms)
Max: 0.0
Tmax: 282.9 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

Pass. nij (NTF) () vs TIME (ms)
Max: 0.2
Tmax: 175.9 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NTE) () vs TIME (ms)
Max: 0.1
Tmax: 270.0 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NCF) () vs TIME (ms)
Max: 0.5
Tmax: 75.6 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NCE) () vs TIME (ms)
Max: 0.1
Tmax: 118.9 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
- Max: 27.2 Nm
- Tmax: 146.1 ms
- Min: -10.0 Nm
- Tmin: 42.4 ms
- CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
- Max: 73.0 Nm
- Tmax: 57.0 ms
- Min: -6.1 Nm
- Tmin: 276.2 ms
- CFC 600
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

LEFT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)
Max: 1.6 G's
Tmax: 94.5 ms
Min: -29.8 G's
Tmin: 67.9 ms

LEFT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 0.0 ms
Min: -6.2 kph
Tmin: 133.4 ms

RIGHT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)
Max: 1.3 G's
Tmax: 154.5 ms
Min: -29.4 G's
Tmin: 69.4 ms

RIGHT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 0.0 ms
Min: -6.5 kph
Tmin: 133.1 ms
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)
Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

TOP OF ENGINE X (G's) vs TIME (ms)
- Max: 16.1 G's
- Tmax: 60.1 ms
- Min: -88.1 G's
- Tmin: 45.3 ms
- CFC 60

TOP OF ENGINE X Velocity (kph) vs TIME (ms)
- Max: 39.8 kph
- Tmax: 0.0 ms
- Min: -8.2 kph
- Tmin: 172.3 ms
- CFC 180

BOTTOM OF ENGINE X (G's) vs TIME (ms)
- Max: 8.3 G's
- Tmax: 62.3 ms
- Min: -46.6 G's
- Tmin: 47.9 ms
- CFC 60

BOTTOM OF ENGINE X Velocity (kph) vs TIME (ms)
- Max: 39.8 kph
- Tmax: 0.0 ms
- Min: -11.1 kph
- Tmin: 300.0 ms
- CFC 180
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

LEFT BRAKE CALIPER X (G's) vs TIME (ms)
Max: 22.7 G's
Tmax: 78.2 ms
Min: -36.2 G's
Tmin: 45.7 ms
CFC 60

LEFT BRAKE CALIPER X Velocity (kph) vs TIME (ms)
Max: 39.9 kph
Tmax: 0.1 ms
Min: -6.3 kph
Tmin: 123.6 ms
CFC 180

RIGHT BRAKE CALIPER X (G's) vs TIME (ms)
Max: 9.6 G's
Tmax: 75.8 ms
Min: -32.8 G's
Tmin: 36.5 ms
CFC 60

RIGHT BRAKE CALIPER X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 2.2 ms
Min: -7.2 kph
Tmin: 269.4 ms
CFC 180
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

INSTRUMENT PANEL X (G's) vs TIME (ms)
Max: 49.9 G's
Tmax: 42.8 ms
Min: -22.1 G's
Tmin: 37.9 ms
CFC 60

No Valid Data After Approximately 50 msec.

INSTRUMENT PANEL X Velocity (kph) vs TIME (ms)
Max: 39.8 kph
Tmax: 0.0 ms
Min: 25.2 kph
Tmin: 41.5 ms
CFC 180

No Valid Data After Approximately 50 msec.

TRUNK Z (G's) vs TIME (ms)
Max: 7.6 G's
Tmax: 80.8 ms
Min: -7.9 G's
Tmin: 46.4 ms
CFC 60

TRUNK Z Velocity (kph) vs TIME (ms)
Max: 0.4 kph
Tmax: 31.1 ms
Min: -4.5 kph
Tmin: 73.6 ms
CFC 180
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

BARRIER FORCE - UPPER LEFT (KN) vs TIME (ms)

Max: 0.5 KN
Tmax: 0.0 ms
Min: -23.4 KN
Tmin: 54.5 ms
CFC 60

BARRIER FORCE - UPPER CENTER (KN) vs TIME (ms)

Max: 5.2 KN
Tmax: 6.4 ms
Min: -56.0 KN
Tmin: 49.6 ms
CFC 60

BARRIER FORCE - UPPER RIGHT (KN) vs TIME (ms)

Max: 1.6 KN
Tmax: 6.5 ms
Min: -45.9 KN
Tmin: 62.1 ms
CFC 60
25 MPH FRONTAL UNBELTED
2006 MERCEDES E350 (C60503)

Test Date: 07/18/2006
Speed: 24.7 mph (39.8 km/h)

Max: 2.0 KN
Tmax: 3.7 ms
Min: -120.5 KN
Tmin: 35.7 ms
CFC 60

Max: 1.1 KN
Tmax: 0.0 ms
Min: -143.9 KN
Tmin: 49.8 ms
CFC 60

Max: 1.1 KN
Tmax: 2.5 ms
Min: -139.5 KN
Tmin: 34.7 ms
CFC 60

BARRIER FORCE - LOWER LEFT (KN) vs TIME (ms)

BARRIER FORCE - LOWER CENTER (KN) vs TIME (ms)

BARRIER FORCE - LOWER RIGHT (KN) vs TIME (ms)
2006 MERCEDES E350 (C60503)

Speed: 24.7 mph (39.8 km/h)

Test Date: 07/18/2006

BARRIER FORCE - SUM LEFT (KN) vs TIME (ms)
Max: 2.1 KN
Tmax: 3.7 ms
Min: -140.0 KN
Tmin: 58.7 ms
CFC 60

BARRIER FORCE - SUM CENTER (KN) vs TIME (ms)
Max: 1.2 KN
Tmax: 155.2 ms
Min: -199.9 KN
Tmin: 49.7 ms
CFC 60

BARRIER FORCE - SUM RIGHT (KN) vs TIME (ms)
Max: 1.4 KN
Tmax: 3.0 ms
Min: -156.9 KN
Tmin: 34.8 ms
CFC 60

BARRIER FORCE - SUM ALL (KN) vs TIME (ms)
Max: 1.0 KN
Tmax: 188.1 ms
Min: -456.3 KN
Tmin: 52.4 ms
CFC 60
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5th Fem. P1 Driver Head X Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>2</td>
<td>5th Fem. P1 Driver Head Y Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>3</td>
<td>5th Fem. P1 Driver Head Z Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>4</td>
<td>5th Fem. P1 Driver Head Resultant Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>5</td>
<td>5th Fem. P1 Driver Head X Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>6</td>
<td>5th Fem. P1 Driver Head Y Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>7</td>
<td>5th Fem. P1 Driver Head Z Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>8</td>
<td>5th Fem. P1 Driver Neck Force X vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>9</td>
<td>5th Fem. P1 Driver Neck Force Y vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>10</td>
<td>5th Fem. P1 Driver Neck Force Z vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>11</td>
<td>5th Fem. P1 Driver Neck Force Resultant vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>12</td>
<td>5th Fem. P1 Driver Neck Moment X vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>13</td>
<td>5th Fem. P1 Driver Neck Moment Y vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>14</td>
<td>5th Fem. P1 Driver Neck Moment Z vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>15</td>
<td>5th Fem. P1 Driver Occipital Condyle Moment vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>16</td>
<td>5th Fem. P1 Driver Chest X Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>17</td>
<td>5th Fem. P1 Driver Chest Y Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>18</td>
<td>5th Fem. P1 Driver Chest Z Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>19</td>
<td>5th Fem. P1 Driver Chest Resultant Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>20</td>
<td>5th Fem. P1 Driver Chest X Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>21</td>
<td>5th Fem. P1 Driver Chest Y Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>22</td>
<td>5th Fem. P1 Driver Chest Z Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>23</td>
<td>5th Fem. P1 Driver Chest Displacement vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>24</td>
<td>5th Fem. P1 Driver Left Femur Force vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>25</td>
<td>5th Fem. P1 Driver Right Femur Force vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>26</td>
<td>Fire Voltage #1 Voltage vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>27</td>
<td>Fire Current #1 Voltage vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>28</td>
<td>Fire Voltage #2 Voltage vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>29</td>
<td>Fire Current #2 Voltage vs. Time</td>
<td>B-8</td>
</tr>
</tbody>
</table>
Figure No. 30. 5th Fem. P1 Driver Nij (N_{TF}) vs. Time

Figure No. 31. 5th Fem. P1 Driver Nij (N_{TE}) vs. Time

Figure No. 32. 5th Fem. P1 Driver Nij (N_{CF}) vs. Time

Figure No. 33. 5th Fem. P1 Driver Nij (N_{CE}) vs. Time

Figure No. 34. 5th Fem. P2 Driver Head X Acceleration vs. Time

Figure No. 35. 5th Fem. P2 Driver Head Y Acceleration vs. Time

Figure No. 36. 5th Fem. P2 Driver Head Z Acceleration vs. Time

Figure No. 37. 5th Fem. P2 Driver Head Resultant Acceleration vs. Time

Figure No. 38. 5th Fem. P2 Driver Head X Velocity vs. Time

Figure No. 39. 5th Fem. P2 Driver Head Y Velocity vs. Time

Figure No. 40. 5th Fem. P2 Driver Head Z Velocity vs. Time

Figure No. 41. 5th Fem. P2 Driver Neck Force X vs. Time

Figure No. 42. 5th Fem. P2 Driver Neck Force Y vs. Time

Figure No. 43. 5th Fem. P2 Driver Neck Force Z vs. Time

Figure No. 44. 5th Fem. P2 Driver Neck Force Resultant vs. Time

Figure No. 45. 5th Fem. P2 Driver Neck Moment X vs. Time

Figure No. 46. 5th Fem. P2 Driver Neck Moment Y vs. Time

Figure No. 47. 5th Fem. P2 Driver Neck Moment Z vs. Time

Figure No. 48. 5th Fem. P2 Driver Occipital Condyle Moment vs. Time

Figure No. 49. 5th Fem. P2 Driver Chest X Acceleration vs. Time

Figure No. 50. 5th Fem. P2 Driver Chest Y Acceleration vs. Time

Figure No. 51. 5th Fem. P2 Driver Chest Z Acceleration vs. Time

Figure No. 52. 5th Fem. P2 Driver Chest Resultant Acceleration vs. Time

Figure No. 53. 5th Fem. P2 Driver Chest X Velocity vs. Time

Figure No. 54. 5th Fem. P2 Driver Chest Y Velocity vs. Time

Figure No. 55. 5th Fem. P2 Driver Chest Z Velocity vs. Time

Figure No. 56. 5th Fem. P2 Driver Chest Displacement vs. Time

Figure No. 57. 5th Fem. P2 Driver Left Femur Force vs. Time

Figure No. 58. 5th Fem. P2 Driver Right Femur Force vs. Time

Figure No. 59. Fire Voltage #1 Voltage vs. Time
Figure No. 60. Fire Current #1 Voltage vs. Time B-17
Figure No. 61. Fire Voltage #2 Voltage vs. Time B-17
Figure No. 62. Fire Current #2 Voltage vs. Time B-17
Figure No. 63. 5th Fem. P2 Driver Nij (NTF) vs. Time B-18
Figure No. 64. 5th Fem. P2 Driver Nij (NTE) vs. Time B-18
Figure No. 65. 5th Fem. P2 Driver Nij (NCF) vs. Time B-18
Figure No. 66. 5th Fem. P2 Driver Nij (NCE) vs. Time B-18
Figure No. 67. 3 Year Old P1 Passenger Head X Acceleration vs. Time B-19
Figure No. 68. 3 Year Old P1 Passenger Head Y Acceleration vs. Time B-19
Figure No. 69. 3 Year Old P1 Passenger Head Z Acceleration vs. Time B-19
Figure No. 70. 3 Year Old P1 Passenger Head Resultant Acceleration vs. Time B-19
Figure No. 71. 3 Year Old P1 Passenger Head X Velocity vs. Time B-20
Figure No. 72. 3 Year Old P1 Passenger Head Y Velocity vs. Time B-20
Figure No. 73. 3 Year Old P1 Passenger Head Z Velocity vs. Time B-20
Figure No. 74. 3 Year Old P1 Passenger Neck Force X vs. Time B-21
Figure No. 75. 3 Year Old P1 Passenger Neck Force Y vs. Time B-21
Figure No. 76. 3 Year Old P1 Passenger Neck Force Z vs. Time B-21
Figure No. 77. 3 Year Old P1 Passenger Neck Force Resultant vs. Time B-21
Figure No. 78. 3 Year Old P1 Passenger Neck Moment X vs. Time B-22
Figure No. 79. 3 Year Old P1 Passenger Neck Moment Y vs. Time B-22
Figure No. 80. 3 Year Old P1 Passenger Neck Moment Z vs. Time B-22
Figure No. 81. 3 Year Old P1 Passenger Occipital Condyle Moment vs. Time B-22
Figure No. 82. 3 Year Old P1 Passenger Chest X Acceleration vs. Time B-23
Figure No. 83. 3 Year Old P1 Passenger Chest Y Acceleration vs. Time B-23
Figure No. 84. 3 Year Old P1 Passenger Chest Z Acceleration vs. Time B-23
Figure No. 85. 3 Year Old P1 Passenger Chest Resultant Acceleration vs. Time B-23
Figure No. 86. 3 Year Old P1 Passenger Chest X Velocity vs. Time B-24
Figure No. 87. 3 Year Old P1 Passenger Chest Y Velocity vs. Time B-24
Figure No. 88. 3 Year Old P1 Passenger Chest Z Velocity vs. Time B-24
Figure No. 89. 3 Year Old P1 Passenger Chest Displacement vs. Time B-24
Figure No. 90. Fire Voltage #1 Voltage vs. Time B-25
Figure No. 91. Fire Current #1 Voltage vs. Time B-25
Figure No. 92. Fire Voltage #2 Voltage vs. Time B-25
Figure No. 93. Fire Current #2 Voltage vs. Time B-25
Figure No. 94. 3 Year Old P1 Passenger Nij (N_{TF}) vs. Time B-26
Figure No. 95. 3 Year Old P1 Passenger Nij (N_{TE}) vs. Time B-26
Figure No. 96. 3 Year Old P1 Passenger Nij (N_{CF}) vs. Time B-26
Figure No. 97. 3 Year Old P1 Passenger Nij (N_{CE}) vs. Time B-26
Figure No. 98. 3 Year Old P2 Passenger Head X Acceleration vs. Time B-27
Figure No. 99. 3 Year Old P2 Passenger Head Y Acceleration vs. Time B-27
Figure No. 100. 3 Year Old P2 Passenger Head Z Acceleration vs. Time B-27
Figure No. 101. 3 Year Old P2 Passenger Head Resultant Acceleration vs. Time B-27
Figure No. 102. 3 Year Old P2 Passenger Head X Velocity vs. Time B-28
Figure No. 103. 3 Year Old P2 Passenger Head Y Velocity vs. Time B-28
Figure No. 104. 3 Year Old P2 Passenger Head Z Velocity vs. Time B-28
Figure No. 105. 3 Year Old P2 Passenger Neck Force X vs. Time B-29
Figure No. 106. 3 Year Old P2 Passenger Neck Force Y vs. Time B-29
Figure No. 107. 3 Year Old P2 Passenger Neck Force Z vs. Time B-29
Figure No. 108. 3 Year Old P2 Passenger Neck Force Resultant vs. Time B-29
Figure No. 109. 3 Year Old P2 Passenger Neck Moment X vs. Time B-30
Figure No. 110. 3 Year Old P2 Passenger Neck Moment Y vs. Time B-30
Figure No. 111. 3 Year Old P2 Passenger Neck Moment Z vs. Time B-30
Figure No. 112. 3 Year Old P2 Passenger Occipital Condyle Moment vs. Time B-30
Figure No. 113. 3 Year Old P2 Passenger Chest X Acceleration vs. Time B-31
Figure No. 114. 3 Year Old P2 Passenger Chest Y Acceleration vs. Time B-31
Figure No. 115. 3 Year Old P2 Passenger Chest Z Acceleration vs. Time B-31
Figure No. 116. 3 Year Old P2 Passenger Chest Resultant Acceleration vs. Time B-31
Figure No. 117. 3 Year Old P2 Passenger Chest X Velocity vs. Time B-32
Figure No. 118. 3 Year Old P2 Passenger Chest Y Velocity vs. Time B-32
Figure No. 119. 3 Year Old P2 Passenger Chest Z Velocity vs. Time B-32
Figure No. 120. 3 Year Old P2 Passenger Chest Displacement vs. Time B-32
Figure No. 121. Fire Voltage #1 Voltage vs. Time B-33
Figure No. 122. Fire Current #1 Voltage vs. Time B-33
Figure No. 123. Fire Voltage #2 Voltage vs. Time B-33
Figure No. 124. Fire Current #2 Voltage vs. Time B-33
Figure No. 125. 3 Year Old P2 Passenger Nij (N_{TF}) vs. Time B-34
Figure No. 126. 3 Year Old P2 Passenger Nij (N_{TE}) vs. Time B-34
Figure No. 127. 3 Year Old P2 Passenger Nij (N_{CF}) vs. Time B-34
Figure No. 128. 3 Year Old P2 Passenger Nij (N_{CE}) vs. Time B-34
Figure No. 129. 6 Year Old P1 Passenger Head X Acceleration vs. Time B-35
Figure No. 130. 6 Year Old P1 Passenger Head Y Acceleration vs. Time B-35
Figure No. 131. 6 Year Old P1 Passenger Head Z Acceleration vs. Time B-35
Figure No. 132. 6 Year Old P1 Passenger Head Resultant Acceleration vs. Time B-35
Figure No. 133. 6 Year Old P1 Passenger Head X Velocity vs. Time B-36
Figure No. 134. 6 Year Old P1 Passenger Head Y Velocity vs. Time B-36
Figure No. 135. 6 Year Old P1 Passenger Head Z Velocity vs. Time B-36
Figure No. 136. 6 Year Old P1 Passenger Neck Force X vs. Time B-37
Figure No. 137. 6 Year Old P1 Passenger Neck Force Y vs. Time B-37
Figure No. 138. 6 Year Old P1 Passenger Neck Force Z vs. Time B-37
Figure No. 139. 6 Year Old P1 Passenger Neck Force Resultant vs. Time B-37
Figure No. 140. 6 Year Old P1 Passenger Neck Moment X vs. Time B-38
Figure No. 141. 6 Year Old P1 Passenger Neck Moment Y vs. Time B-38
Figure No. 142. 6 Year Old P1 Passenger Neck Moment Z vs. Time B-38
Figure No. 143. 6 Year Old P1 Passenger Occipital Condyle Moment vs. Time B-38
Figure No. 144. 6 Year Old P1 Passenger Chest X Acceleration vs. Time B-39
Figure No. 145. 6 Year Old P1 Passenger Chest Y Acceleration vs. Time B-39
Figure No. 146. 6 Year Old P1 Passenger Chest Z Acceleration vs. Time B-39
Figure No. 147. 6 Year Old P1 Passenger Chest Resultant Acceleration vs. Time B-39
Figure No. 148. 6 Year Old P1 Passenger Chest X Velocity vs. Time B-40
Figure No. 149. 6 Year Old P1 Passenger Chest Y Velocity vs. Time B-40
Figure No. 150. 6 Year Old P1 Passenger Chest Z Velocity vs. Time B-40
Figure No. 151. 6 Year Old P1 Passenger Chest Displacement vs. Time B-40
Figure No. 152. Fire Voltage #1 Voltage vs. Time B-41
Figure No. 153. Fire Current #1 Voltage vs. Time B-41
Figure No. 154. Fire Voltage #2 Voltage vs. Time B-41
Figure No. 155. Fire Current #2 Voltage vs. Time B-41
Figure No. 156. 6 Year Old P1 Passenger Nij (N_{TF}) vs. Time B-42
Figure No. 157. 6 Year Old P1 Passenger Nij (N_{TE}) vs. Time B-42
Figure No. 158. 6 Year Old P1 Passenger Nij (N_{CF}) vs. Time B-42
Figure No. 159. 6 Year Old P1 Passenger Nij (N_{CE}) vs. Time B-42
Figure No. 160. 6 Year Old P2 Passenger Head X Acceleration vs. Time B-43
Figure No. 161. 6 Year Old P2 Passenger Head Y Acceleration vs. Time B-43
Figure No. 162. 6 Year Old P2 Passenger Head Z Acceleration vs. Time B-43
Figure No. 163. 6 Year Old P2 Passenger Head Resultant Acceleration vs. Time B-43
Figure No. 164. 6 Year Old P2 Passenger Head X Velocity vs. Time B-44
Figure No. 165. 6 Year Old P2 Passenger Head Y Velocity vs. Time B-44
Figure No. 166. 6 Year Old P2 Passenger Head Z Velocity vs. Time B-44
Figure No. 167. 6 Year Old P2 Passenger Neck Force X vs. Time B-45
Figure No. 168. 6 Year Old P2 Passenger Neck Force Y vs. Time B-45
Figure No. 169. 6 Year Old P2 Passenger Neck Force Z vs. Time B-45
Figure No. 170. 6 Year Old P2 Passenger Neck Force Resultant vs. Time B-45
Figure No. 171. 6 Year Old P2 Passenger Neck Moment X vs. Time B-46
Figure No. 172. 6 Year Old P2 Passenger Neck Moment Y vs. Time B-46
Figure No. 173. 6 Year Old P2 Passenger Neck Moment Z vs. Time B-46
Figure No. 174. 6 Year Old P2 Passenger Occipital Condyle Moment vs. Time B-46
Figure No. 175. 6 Year Old P2 Passenger Chest X Acceleration vs. Time B-47
Figure No. 176. 6 Year Old P2 Passenger Chest Y Acceleration vs. Time B-47
Figure No. 177. 6 Year Old P2 Passenger Chest Z Acceleration vs. Time B-47
Figure No. 178. 6 Year Old P2 Passenger Chest Resultant Acceleration vs. Time B-47
Figure No. 179. 6 Year Old P2 Passenger Chest X Velocity vs. Time B-48
Figure No. 180. 6 Year Old P2 Passenger Chest Y Velocity vs. Time B-48
Figure No. 181. 6 Year Old P2 Passenger Chest Z Velocity vs. Time B-48
Figure No. 182. 6 Year Old P2 Passenger Chest Displacement vs. Time B-48
Figure No. 183. Fire Voltage #1 Voltage vs. Time B-49
Figure No. 184. Fire Current #1 Voltage vs. Time B-49
Figure No. 185. Fire Voltage #2 Voltage vs. Time B-49
Figure No. 186. Fire Current #2 Voltage vs. Time B-49
Figure No. 187. 6 Year Old P2 Passenger Nij (N_{TF}) vs. Time B-50
Figure No. 188. 6 Year Old P2 Passenger Nij (N_{TE}) vs. Time B-50
Figure No. 189. 6 Year Old P2 Passenger Nij (N_{CF}) vs. Time B-50
Figure No. 190. 6 Year Old P2 Passenger Nij (N_{CE}) vs. Time B-50
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)
Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER HEAD X (G's) vs TIME (ms)
Max: 7.7 G's
Tmax: 185.6 ms
Min: -28.6 G's
Tmin: 4.4 ms
CFC 1000

5TH FEM. DRIVER HEAD Y (G's) vs TIME (ms)
Max: 3.3 G's
Tmax: 4.5 ms
Min: -4.1 G's
Tmin: 5.5 ms
CFC 1000

5TH FEM. DRIVER HEAD Z (G's) vs TIME (ms)
Max: 7.8 G's
Tmax: 32.2 ms
Min: -13.6 G's
Tmin: 4.8 ms
CFC 1000

5TH FEM. DRIVER HEAD Resultant (G's) vs TIME (ms)
Max: 29.8 G's
Tmax: 4.4 ms
Min: 0.0 G's
Tmin: 2.2 ms
CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)
Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 8.9 kph
Tmax: 325.0 ms
Min: -15.4 kph
Tmin: 64.5 ms
CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 2.0 kph
Tmax: 196.6 ms
Min: -0.1 kph
Tmin: 9.5 ms
CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 22.0 kph
Tmax: 230.1 ms
Min: -0.6 kph
Tmin: 7.4 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)

- Max: 274.2 N
- Tmax: 4.5 ms
- Min: -190.8 N
- Tmin: 26.3 ms
- CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)

- Max: 59.6 N
- Tmax: 5.4 ms
- Min: -41.2 N
- Tmin: 275.0 ms
- CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)

- Max: 563.7 N
- Tmax: 11.2 ms
- Min: -115.6 N
- Tmin: 259.3 ms
- CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)

- Max: 567.2 N
- Tmax: 11.2 ms
- Min: 1.0 N
- Tmin: 2.6 ms
- CFC 1000

B-3
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
- Max: 3.8 Nm
- Tmax: 46.6 ms
- Min: -8.9 Nm
- Tmin: 11.0 ms
- CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
- Max: 18.2 Nm
- Tmax: 44.7 ms
- Min: -14.1 Nm
- Tmin: 23.1 ms
- CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
- Max: 1.7 Nm
- Tmax: 12.9 ms
- Min: -2.8 Nm
- Tmin: 52.9 ms
- CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
- Max: 16.3 Nm
- Tmax: 253.6 ms
- Min: -11.2 Nm
- Tmin: 23.1 ms
- CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
- Max: 3.9 G's
- Tmax: 257.1 ms
- Min: -11.7 G's
- Tmin: 13.5 ms
- CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
- Max: 2.0 G's
- Tmax: 15.4 ms
- Min: -0.6 G's
- Tmin: 45.8 ms
- CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
- Max: 3.4 G's
- Tmax: 12.2 ms
- Min: -3.0 G's
- Tmin: 7.7 ms
- CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
- Max: 12.1 G's
- Tmax: 13.0 ms
- Min: 0.0 G's
- Tmin: 1.3 ms
- CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)
Max: 207.7 N
Tmax: 25.1 ms
Min: -140.9 N
Tmin: 317.8 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)
Max: 133.0 N
Tmax: 20.3 ms
Min: -35.6 N
Tmin: 300.2 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)
Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 15.2 Volts
- Tmax: 1.5 ms
- Min: 0.2 Volts
- Tmin: 10.6 ms
- CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 2.2 Amps
- Tmax: 0.6 ms
- Min: -0.0 Amps
- Tmin: 10.6 ms
- CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 16.2 Volts
- Tmax: 200.5 ms
- Min: -0.1 Volts
- Tmin: 199.8 ms
- CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 1.8 Amps
- Tmax: 200.2 ms
- Min: -0.1 Amps
- Tmin: 199.8 ms
- CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P1)
Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

Drv. nij (NTF) () vs TIME SPECIAL CHS (ms)
- Max: 0.2
- Tmax: 45.6 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Drv. nij (NTE) () vs TIME SPECIAL CHS (ms)
- Max: 0.2
- Tmax: 17.6 ms
- Min: 0.0
- Tmin: 0.3 ms
- CFC 600

Drv. nij (NCF) () vs TIME SPECIAL CHS (ms)
- Max: 0.1
- Tmax: 254.3 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Drv. nij (NCE) () vs TIME SPECIAL CHS (ms)
- Max: 0.1
- Tmax: 318.3 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

- 5TH FEM. DRIVER HEAD X (G's) vs TIME (ms)
 Max: 19.4 G's
 Tmax: 79.5 ms
 Min: -12.1 G's
 Tmin: 18.0 ms
 CFC 1000

- 5TH FEM. DRIVER HEAD Y (G's) vs TIME (ms)
 Max: 2.5 G's
 Tmax: 75.3 ms
 Min: -3.0 G's
 Tmin: 257.4 ms
 CFC 1000

- 5TH FEM. DRIVER HEAD Z (G's) vs TIME (ms)
 Max: 15.1 G's
 Tmax: 8.7 ms
 Min: -2.6 G's
 Tmin: 226.3 ms
 CFC 1000

- 5TH FEM. DRIVER HEAD Resultant (G's) vs TIME (ms)
 Max: 19.8 G's
 Tmax: 79.5 ms
 Min: 0.0 G's
 Tmin: 0.8 ms
 CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 13.4 kph
Tmax: 325.0 ms
Min: -15.1 kph
Tmin: 71.2 ms
CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 1.1 kph
Tmax: 137.8 ms
Min: -3.7 kph
Tmin: 302.2 ms
CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 12.2 kph
Tmax: 199.5 ms
Min: -0.0 kph
Tmin: 6.5 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)
Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
Max: 72.7 N
Tmax: 244.3 ms
Min: -374.4 N
Tmin: 17.6 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
Max: 21.9 N
Tmax: 79.6 ms
Min: -68.0 N
Tmin: 249.0 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
Max: 487.8 N
Tmax: 8.9 ms
Min: -80.3 N
Tmin: 66.5 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
Max: 521.2 N
Tmax: 11.7 ms
Min: 0.5 N
Tmin: 4.2 ms
CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)
Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 2.8 Nm
Tmax: 215.1 ms
Min: -5.8 Nm
Tmin: 228.7 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 23.2 Nm
Tmax: 81.6 ms
Min: -25.1 Nm
Tmin: 16.6 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 2.0 Nm
Tmax: 302.7 ms
Min: -2.0 Nm
Tmin: 99.5 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 24.0 Nm
Tmax: 53.5 ms
Min: -18.6 Nm
Tmin: 16.5 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
Max: 5.6 G's
Tmax: 208.4 ms
Min: -27.5 G's
Tmin: 8.3 ms
CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
Max: 2.0 G's
Tmax: 10.9 ms
Min: -3.1 G's
Tmin: 203.2 ms
CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
Max: 5.5 G's
Tmax: 10.2 ms
Min: -2.2 G's
Tmin: 245.7 ms
CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
Max: 28.0 G's
Tmax: 8.4 ms
Min: 0.0 G's
Tmin: 0.3 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER CHEST X Velocity (kph) vs TIME (ms)
- Max: 8.6 kph
- Tmax: 325.0 ms
- Min: -9.7 kph
- Tmin: 55.1 ms
- CFC 180

5TH FEM. DRIVER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.6 kph
- Tmax: 192.6 ms
- Min: -1.9 kph
- Tmin: 325.0 ms
- CFC 180

5TH FEM. DRIVER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 6.0 kph
- Tmax: 197.7 ms
- Min: 0.0 kph
- Tmin: 3.0 ms
- CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: 0.3 mm
- Tmax: 3.0 ms
- Min: -16.0 mm
- Tmin: 12.4 ms
- CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)
Max: 424.6 N
Tmax: 32.3 ms
Min: -83.7 N
Tmin: 289.9 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)
Max: 514.6 N
Tmax: 34.4 ms
Min: -44.2 N
Tmin: 289.6 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 15.2 Volts
- Tmax: 1.1 ms
- Min: 0.1 Volts
- Tmin: 15.8 ms

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 2.6 Amps
- Tmax: 0.3 ms
- Min: -0.0 Amps
- Tmin: 10.5 ms

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 16.0 Volts
- Tmax: 200.4 ms
- Min: -0.2 Volts
- Tmin: 199.7 ms

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 2.2 Amps
- Tmax: 200.1 ms
- Min: -0.1 Amps
- Tmin: 199.7 ms
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (5TH P2)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

Drv. nij (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.2
Tmax: 80.0 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Drv. nij (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.4
Tmax: 16.2 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Drv. nij (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.2
Tmax: 55.7 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Drv. nij (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.1
Tmax: 296.2 ms
Min: 0.0
Tmin: 0.4 ms
CFC 600
Due to a dummy grounding problem, this data is included for information purposes only.

LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
- Max: 16.0 G's
- Tmax: 14.3 ms
- Min: -32.8 G's
- Tmin: 10.0 ms
- CFC 1000

3YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
- Max: 35.0 G's
- Tmax: 16.9 ms
- Min: -9.7 G's
- Tmin: 35.7 ms
- CFC 1000

3YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
- Max: 27.6 G's
- Tmax: 16.9 ms
- Min: -10.6 G's
- Tmin: 9.9 ms
- CFC 1000

3YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
- Max: 44.6 G's
- Tmax: 16.9 ms
- Min: 0.0 G's
- Tmin: 1.4 ms
- CFC 1000
Due to a dummy grounding problem, this data is included for information purposes only.

LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)

Max: -0.0 kph
Tmax: 2.7 ms
Min: -17.3 kph
Tmin: 62.1 ms
CFC 180

3YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)

Max: 0.1 kph
Tmax: 12.3 ms
Min: -2.5 kph
Tmin: 100.0 ms
CFC 180

3YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)

Max: 16.2 kph
Tmax: 100.0 ms
Min: -0.1 kph
Tmin: 9.9 ms
CFC 180
Due to a dummy grounding problem, this data is included for information purposes only.

LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 289.3 N
Tmax: 11.8 ms
Min: -92.0 N
Tmin: 19.5 ms
CFC 1000

3YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 827.3 N
Tmax: 20.9 ms
Min: -139.4 N
Tmin: 17.2 ms
CFC 1000

3YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 396.6 N
Tmax: 12.7 ms
Min: -219.1 N
Tmin: 21.0 ms
CFC 1000

3YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 837.8 N
Tmax: 20.9 ms
Min: 2.3 N
Tmin: 1.3 ms
CFC 1000
Due to a dummy grounding problem, this data is included for information purposes only.

LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 1.8 Nm
Tmax: 93.7 ms
Min: -3.2 Nm
Tmin: 40.8 ms
CFC 600

3YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 14.7 Nm
Tmax: 11.9 ms
Min: -5.1 Nm
Tmin: 99.4 ms
CFC 600

3YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 6.4 Nm
Tmax: 45.2 ms
Min: -1.2 Nm
Tmin: 100.0 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 14.7 Nm
Tmax: 11.9 ms
Min: -5.1 Nm
Tmin: 99.4 ms
CFC 600
Due to a dummy grounding problem, this data is included for information purposes only.

LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 5.2 G's
Tmax: 21.9 ms
Min: -42.3 G's
Tmin: 13.6 ms
CFC 180

3YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 7.5 G's
Tmax: 28.8 ms
Min: -3.5 G's
Tmin: 12.7 ms
CFC 180

3YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 3.1 G's
Tmax: 11.7 ms
Min: -10.6 G's
Tmin: 13.3 ms
CFC 180

3YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 43.4 G's
Tmax: 13.6 ms
Min: 0.0 G's
Tmin: 2.4 ms
CFC 180
Due to a dummy grounding problem, this data is included for information purposes only.

LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)

- Max: 0.1 kph
- Tmax: 11.4 ms
- Min: -8.7 kph
- Tmin: 63.5 ms
- CFC 180

3YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)

- Max: 16.1 kph
- Tmax: 100.0 ms
- Min: -0.2 kph
- Tmin: 13.4 ms
- CFC 180

3YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)

- Max: 1.5 kph
- Tmax: 100.0 ms
- Min: -1.2 kph
- Tmin: 28.7 ms
- CFC 180

3YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)

- Max: 6.6 mm
- Tmax: 24.3 ms
- Min: -18.6 mm
- Tmin: 14.9 ms
- CFC 600
Due to a dummy grounding problem, this data is included for information purposes only.
Due to a dummy grounding problem, this data is included for information purposes only.

LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P1)

Test Date: 02/15/06
Speed: 0.0 mph (0.0 km/h)
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P2)

Test Date: 06/07/06
Speed: 0.0 mph (0.0 km/h)

3YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
Max: 3.3 G's
Tmax: 69.9 ms
Min: -164.2 G's
Tmin: 9.3 ms
CFC 1000

3YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 17.6 G's
Tmax: 9.2 ms
Min: -10.1 G's
Tmin: 11.7 ms
CFC 1000

3YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 51.3 G's
Tmax: 9.3 ms
Min: -28.1 G's
Tmin: 12.4 ms
CFC 1000

3YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 172.5 G's
Tmax: 9.3 ms
Min: 0.0 G's
Tmin: 3.6 ms
CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P2)

Test Date: 06/07/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

1. **3YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)**
 - Max: 0.0 kph
 - Tmax: 5.3 ms
 - Min: -27.7 kph
 - Tmin: 59.9 ms
 - CFC 180

2. **3YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)**
 - Max: 0.6 kph
 - Tmax: 15.5 ms
 - Min: -1.0 kph
 - Tmin: 39.5 ms
 - CFC 180

3. **3YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)**
 - Max: 28.0 kph
 - Tmax: 100.0 ms
 - Min: -0.0 kph
 - Tmin: 7.2 ms
 - CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P2)
Test Date: 06/07/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 1252.8 N
Tmax: 9.4 ms
Min: -73.6 N
Tmin: 20.6 ms
CFC 1000

3YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 64.4 N
Tmax: 11.1 ms
Min: -28.6 N
Tmin: 9.1 ms
CFC 1000

3YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 380.3 N
Tmax: 48.3 ms
Min: -186.5 N
Tmin: 12.1 ms
CFC 1000

3YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 1254.9 N
Tmax: 9.4 ms
Min: 0.5 N
Tmin: 1.1 ms
CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P2)

Test Date: 06/07/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 5.9 Nm
Tmax: 39.8 ms
Min: -3.2 Nm
Tmin: 11.1 ms
CFC 600

3YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 47.6 Nm
Tmax: 11.0 ms
Min: -9.0 Nm
Tmin: 47.5 ms
CFC 600

3YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 2.5 Nm
Tmax: 41.0 ms
Min: -2.8 Nm
Tmin: 74.3 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 47.6 Nm
Tmax: 11.0 ms
Min: -9.0 Nm
Tmin: 47.5 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P2)
Test Date: 06/07/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

3YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 5.6 G's
Tmax: 19.7 ms
Min: -28.4 G's
Tmin: 11.8 ms
CFC 180

3YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 1.2 G's
Tmax: 21.6 ms
Min: -2.2 G's
Tmin: 47.9 ms
CFC 180

3YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 5.1 G's
Tmax: 85.1 ms
Min: -4.0 G's
Tmin: 7.8 ms
CFC 180

3YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 28.5 G's
Tmax: 11.8 ms
Min: 0.0 G's
Tmin: 2.9 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P2)
Test Date: 06/07/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 16.5 Volts
- Tmax: 0.6 ms
- Min: -0.4 Volts
- Tmin: 72.1 ms
- CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 1.8 Amps
- Tmax: 0.2 ms
- Min: -0.3 Amps
- Tmin: 4.4 ms
- CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 0.0 Volts
- Tmax: 95.5 ms
- Min: -0.0 Volts
- Tmin: 69.9 ms
- CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 0.0 Amps
- Tmax: 12.6 ms
- Min: -0.1 Amps
- Tmin: 4.5 ms
- CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (3YO P2)

Test Date: 06/07/06
Speed: 0.0 mph (0.0 km/h)

PASS. nij (NTF) () vs TIME SPECIAL CHS (ms)

Max: 0.6
Tmax: 10.1 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NTE) () vs TIME SPECIAL CHS (ms)

Max: 0.5
Tmax: 47.7 ms
Min: 0.0
Tmin: 0.2 ms
CFC 600

Pass. nij (NCF) () vs TIME SPECIAL CHS (ms)

Max: 0.8
Tmax: 11.5 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Pass. nij (NCE) () vs TIME SPECIAL CHS (ms)

Max: 0.1
Tmax: 20.3 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
- Max: 1.5 G's
- Tmax: 93.3 ms
- Min: -41.6 G's
- Tmin: 9.8 ms

6YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
- Max: 9.1 G's
- Tmax: 10.2 ms
- Min: -8.4 G's
- Tmin: 11.0 ms

6YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
- Max: 22.1 G's
- Tmax: 9.9 ms
- Min: -2.6 G's
- Tmin: 22.8 ms

6YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
- Max: 46.2 G's
- Tmax: 9.9 ms
- Min: 0.0 G's
- Tmin: 0.3 ms
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 8.4 ms
Min: -12.4 kph
Tmin: 64.2 ms
CFC 180

6YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: 0.2 kph
Tmax: 14.8 ms
Min: -1.9 kph
Tmin: 63.2 ms
CFC 180

6YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 11.4 kph
Tmax: 100.0 ms
Min: 0.0 kph
Tmin: 8.7 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 456.7 N
Tmax: 9.9 ms
Min: -3.0 N
Tmin: 3.3 ms
CFC 1000

6YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 52.4 N
Tmax: 19.1 ms
Min: -61.1 N
Tmin: 9.9 ms
CFC 1000

6YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 406.7 N
Tmax: 13.6 ms
Min: -28.9 N
Tmin: 1.3 ms
CFC 1000

6YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 492.9 N
Tmax: 13.7 ms
Min: 1.1 N
Tmin: 5.3 ms
CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
- Max: 1.7 Nm
- Tmax: 10.1 ms
- Min: -3.7 Nm
- Tmin: 24.4 ms
- CFC 600

6YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
- Max: 19.7 Nm
- Tmax: 13.4 ms
- Min: -5.8 Nm
- Tmin: 98.4 ms
- CFC 600

6YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
- Max: 2.2 Nm
- Tmax: 53.0 ms
- Min: -0.8 Nm
- Tmin: 100.0 ms
- CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
- Max: 14.6 Nm
- Tmax: 13.5 ms
- Min: -6.5 Nm
- Tmin: 98.6 ms
- CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

6YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 4.6 G's
Tmax: 18.8 ms
Min: -17.0 G's
Tmin: 13.4 ms
CFC 180

6YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 0.6 G's
Tmax: 11.0 ms
Min: -1.3 G's
Tmin: 18.0 ms
CFC 180

6YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 4.9 G's
Tmax: 12.7 ms
Min: -3.8 G's
Tmin: 11.0 ms
CFC 180

6YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 17.1 G's
Tmax: 13.3 ms
Min: 0.0 G's
Tmin: 2.8 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 10.9 ms
Min: -4.3 kph
Tmin: 65.1 ms
CFC 180

6YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 11.9 ms
Min: -0.4 kph
Tmin: 53.6 ms
CFC 180

6YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
Max: 1.9 kph
Tmax: 100.0 ms
Min: -0.3 kph
Tmin: 26.8 ms
CFC 180

6YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 1.7 mm
Tmax: 24.4 ms
Min: -4.0 mm
Tmin: 15.5 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 16.4 Volts
- Tmax: 0.5 ms
- Min: -0.3 Volts
- Tmin: 55.5 ms
- CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 3.9 Amps
- Tmax: 1.2 ms
- Min: -0.0 Amps
- Tmin: 10.6 ms
- CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 0.0 Volts
- Tmax: 10.8 ms
- Min: -0.0 Volts
- Tmin: 73.4 ms
- CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 0.0 Amps
- Tmax: 1.2 ms
- Min: -0.0 Amps
- Tmin: 52.1 ms
- CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P1)

Test Date: 03/29/06
Speed: 0.0 mph (0.0 km/h)

PASS. nij (NTF) () vs TIME SPECIAL CHS (ms)

Max: 0.3
Tmax: 13.6 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

PASS. nij (NTE) () vs TIME SPECIAL CHS (ms)

Max: 0.2
Tmax: 98.6 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

PASS. nij (NCF) () vs TIME SPECIAL CHS (ms)

Max: 0.0
Tmax: 0.2 ms
Min: 0.0
Tmin: 0.3 ms
CFC 600

PASS. nij (NCE) () vs TIME SPECIAL CHS (ms)

Max: 0.0
Tmax: 1.3 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X (G's) vs TIME (ms)
Max: 4.1 G's
Tmax: 70.5 ms
Min: -134.9 G's
Tmin: 10.2 ms
CFC 1000

6YR OLD PASSENGER HEAD Y (G's) vs TIME (ms)
Max: 13.3 G's
Tmax: 14.5 ms
Min: -4.2 G's
Tmin: 13.5 ms
CFC 1000

6YR OLD PASSENGER HEAD Z (G's) vs TIME (ms)
Max: 29.7 G's
Tmax: 11.2 ms
Min: -3.5 G's
Tmin: 9.9 ms
CFC 1000

6YR OLD PASSENGER HEAD Resultant (G's) vs TIME (ms)
Max: 135.3 G's
Tmax: 10.2 ms
Min: 0.0 G's
Tmin: 3.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER HEAD X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 5.2 ms
Min: -29.0 kph
Tmin: 54.2 ms
CFC 180

6YR OLD PASSENGER HEAD Y Velocity (kph) vs TIME (ms)
Max: 0.7 kph
Tmax: 20.7 ms
Min: -0.7 kph
Tmin: 52.8 ms
CFC 180

6YR OLD PASSENGER HEAD Z Velocity (kph) vs TIME (ms)
Max: 30.2 kph
Tmax: 100.0 ms
Min: 0.0 kph
Tmin: 0.1 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK FX (N) vs TIME (ms)
Max: 817.8 N
Tmax: 11.5 ms
Min: -65.6 N
Tmin: 32.9 ms
CFC 1000

6YR OLD PASSENGER NECK FY (N) vs TIME (ms)
Max: 45.7 N
Tmax: 55.4 ms
Min: -56.2 N
Tmin: 10.2 ms
CFC 1000

6YR OLD PASSENGER NECK FZ (N) vs TIME (ms)
Max: 558.3 N
Tmax: 31.4 ms
Min: -332.2 N
Tmin: 11.4 ms
CFC 1000

6YR OLD PASSENGER NECK FResultant (N) vs TIME (ms)
Max: 882.0 N
Tmax: 11.4 ms
Min: 1.2 N
Tmin: 3.2 ms
CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER NECK MX (Nm) vs TIME (ms)
Max: 2.0 Nm
Tmax: 10.4 ms
Min: -3.0 Nm
Tmin: 28.4 ms
CFC 600

6YR OLD PASSENGER NECK MY (Nm) vs TIME (ms)
Max: 40.2 Nm
Tmax: 14.7 ms
Min: -23.4 Nm
Tmin: 33.3 ms
CFC 600

6YR OLD PASSENGER NECK MZ (Nm) vs TIME (ms)
Max: 3.1 Nm
Tmax: 55.4 ms
Min: -1.2 Nm
Tmin: 95.0 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 29.5 Nm
Tmax: 14.8 ms
Min: -22.3 Nm
Tmin: 33.4 ms
CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X (G's) vs TIME (ms)
Max: 0.6 G's
Tmax: 31.2 ms
Min: -10.6 G's
Tmin: 16.0 ms
CFC 180

6YR OLD PASSENGER CHEST Y (G's) vs TIME (ms)
Max: 1.5 G's
Tmax: 18.4 ms
Min: -0.9 G's
Tmin: 61.2 ms
CFC 180

6YR OLD PASSENGER CHEST Z (G's) vs TIME (ms)
Max: 3.3 G's
Tmax: 69.2 ms
Min: -6.5 G's
Tmin: 13.8 ms
CFC 180

6YR OLD PASSENGER CHEST Resultant (G's) vs TIME (ms)
Max: 11.4 G's
Tmax: 13.9 ms
Min: 0.0 G's
Tmin: 4.0 ms
CFC 180
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

6YR OLD PASSENGER CHEST X Velocity (kph) vs TIME (ms)
- Max: -0.0 kph
- Tmax: 5.0 ms
- Min: -10.4 kph
- Tmin: 100.0 ms
- CFC 180

6YR OLD PASSENGER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.4 kph
- Tmax: 28.7 ms
- Min: -0.1 kph
- Tmin: 100.0 ms
- CFC 180

6YR OLD PASSENGER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 3.0 kph
- Tmax: 100.0 ms
- Min: -2.0 kph
- Tmin: 41.1 ms
- CFC 180

6YR OLD PASSENGER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: 0.8 mm
- Tmax: 71.2 ms
- Min: -2.1 mm
- Tmin: 33.3 ms
- CFC 600
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 100ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
- Max: 16.0 Volts
- Tmax: 0.5 ms
- Min: -0.4 Volts
- Tmin: 10.5 ms
- CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
- Max: 1.9 Amps
- Tmax: 0.2 ms
- Min: -0.0 Amps
- Tmin: 10.5 ms
- CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
- Max: 0.0 Volts
- Tmax: 94.7 ms
- Min: -0.0 Volts
- Tmin: 37.1 ms
- CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
- Max: 0.0 Amps
- Tmax: 95.0 ms
- Min: -0.1 Amps
- Tmin: 1.6 ms
- CFC 1000
LOW RISK DEPLOYMENT
2006 Mercedes E350 (C60503) (6YO P2)

Test Date: 05/10/06
Speed: 0.0 mph (0.0 km/h)

PASS. nij (NTF) () vs TIME SPECIAL CHS (ms)
- Max: 0.4
- Tmax: 14.2 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Pass. nij (NTE) () vs TIME SPECIAL CHS (ms)
- Max: 0.8
- Tmax: 32.2 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Pass. nij (NCF) () vs TIME SPECIAL CHS (ms)
- Max: 0.3
- Tmax: 12.2 ms
- Min: 0.0
- Tmin: 0.1 ms
- CFC 600

Pass. nij (NCE) () vs TIME SPECIAL CHS (ms)
- Max: 0.0
- Tmax: 0.3 ms
- Min: 0.0
- Tmin: 0.4 ms
- CFC 600
APPENDIX C

CRASH TEST PHOTOGRAPHS
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle Certification Label</td>
<td>C-1</td>
</tr>
<tr>
<td>2</td>
<td>Tire Placard</td>
<td>C-2</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test Front View of Test Vehicle</td>
<td>C-3</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test Front View of Test Vehicle</td>
<td>C-4</td>
</tr>
<tr>
<td>5</td>
<td>Pre-Test Left Side View of Test Vehicle</td>
<td>C-5</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test Left Side View of Test Vehicle</td>
<td>C-6</td>
</tr>
<tr>
<td>7</td>
<td>Pre-Test Right Side View of Test Vehicle</td>
<td>C-7</td>
</tr>
<tr>
<td>8</td>
<td>Post-Test Right Side View of Test Vehicle</td>
<td>C-8</td>
</tr>
<tr>
<td>9</td>
<td>Pre-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-9</td>
</tr>
<tr>
<td>10</td>
<td>Post-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-10</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-11</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-12</td>
</tr>
<tr>
<td>13</td>
<td>Pre-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-13</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-14</td>
</tr>
<tr>
<td>15</td>
<td>Pre-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-15</td>
</tr>
<tr>
<td>16</td>
<td>Post-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-16</td>
</tr>
<tr>
<td>17</td>
<td>Pre-Test Rear View of Test Vehicle</td>
<td>C-17</td>
</tr>
<tr>
<td>18</td>
<td>Post-Test Rear View of Test Vehicle</td>
<td>C-18</td>
</tr>
<tr>
<td>19</td>
<td>Pre-Test Windshield View</td>
<td>C-19</td>
</tr>
<tr>
<td>20</td>
<td>Post-Test Windshield View</td>
<td>C-20</td>
</tr>
<tr>
<td>21</td>
<td>Pre-Test Engine Compartment View</td>
<td>C-21</td>
</tr>
<tr>
<td>22</td>
<td>Post-Test Engine Compartment View</td>
<td>C-22</td>
</tr>
<tr>
<td>23</td>
<td>Pre-Test Fuel Filler Cap View</td>
<td>C-23</td>
</tr>
<tr>
<td>24</td>
<td>Post-Test Fuel Filler Cap View</td>
<td>C-24</td>
</tr>
<tr>
<td>25</td>
<td>Pre-Test Front Underbody View</td>
<td>C-25</td>
</tr>
<tr>
<td>26</td>
<td>Post-Test Front Underbody View</td>
<td>C-26</td>
</tr>
</tbody>
</table>
Photo No. 27. Pre-Test Mid Underbody View
Photo No. 28. Post-Test Mid Underbody View
Photo No. 29. Pre-Test Mid Rear Underbody View
Photo No. 30. Post-Test Mid Rear Underbody View
Photo No. 31. Pre-Test Rear Underbody View
Photo No. 32. Post-Test Rear Underbody View
Photo No. 33. Pre-Test Driver Dummy Front View (head position)
Photo No. 34. Post-Test Driver Dummy Front View (head position)
Photo No. 35. Pre-Test Driver Dummy Position Left Side View
Photo No. 36. Post-Test Driver Dummy Position Left Side View
Photo No. 37. Pre-Test Driver Dummy Position Left Side View (Door Open)
Photo No. 38. Post-Test Driver Dummy Position Left Side View (Door Open)
Photo No. 39. Pre-Test Driver Dummy Seat Position
Photo No. 40. Post-Test Driver Dummy Seat Position
Photo No. 41. Pre-Test Driver Dummy Feet Position
Photo No. 42. Post-Test Driver Dummy Feet Position
Photo No. 43. Pre-Test Driver Side Knee Bolster View
Photo No. 44. Post-Test Driver Side Knee Bolster View
Photo No. 45. Post-Test Driver Dummy Head Contact (head rest)
Photo No. 46. Post-Test Driver Dummy Head Contact (visor)
Photo No. 47. Post-Test Driver Dummy Knee Contact
Photo No. 48. Post-Test Driver Dummy Airbag Contact
Photo No. 49. Pre-Test Passenger Dummy Front View (head position)
Photo No. 50. Post-Test Passenger Dummy Front View (head position)
Photo No. 51. Pre-Test Passenger Dummy Position Right Side View
Photo No. 52. Post-Test Passenger Dummy Position Right Side View
Photo No. 53. Pre-Test Passenger Dummy Position Right Side View (Door Open)
Photo No. 54. Post-Test Passenger Dummy Position Right Side View (Door Open)
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.</td>
<td>Pre-Test Passenger Dummy Seat Position</td>
</tr>
<tr>
<td>56.</td>
<td>Post-Test Passenger Dummy Seat Position</td>
</tr>
<tr>
<td>57.</td>
<td>Pre-Test Passenger Dummy Feet Position</td>
</tr>
<tr>
<td>58.</td>
<td>Post-Test Passenger Dummy Feet Position</td>
</tr>
<tr>
<td>59.</td>
<td>Pre-Test Passenger Side Knee Bolster View</td>
</tr>
<tr>
<td>60.</td>
<td>Post-Test Passenger Side Knee Bolster View</td>
</tr>
<tr>
<td>61.</td>
<td>Post-Test Passenger Dummy Knee Contact</td>
</tr>
<tr>
<td>62.</td>
<td>Post-Test Passenger Dummy Airbag Contact</td>
</tr>
<tr>
<td>63.</td>
<td>Rollover 90 Degrees</td>
</tr>
<tr>
<td>64.</td>
<td>Rollover 180 Degrees</td>
</tr>
<tr>
<td>65.</td>
<td>Rollover 270 Degrees</td>
</tr>
<tr>
<td>66.</td>
<td>Rollover 360 Degrees</td>
</tr>
<tr>
<td>67.</td>
<td>Temperature Plot</td>
</tr>
<tr>
<td>68.</td>
<td>Vehicle in Relation to The Load Cell Grid</td>
</tr>
<tr>
<td>MFD BY DAIMLERCHRYSLER AG STUTTGART</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>KG</td>
<td>LBS</td>
</tr>
<tr>
<td>GVRW</td>
<td>2195</td>
</tr>
<tr>
<td>GAWR REAR</td>
<td>1195</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VEHICLE TIRE INFORMATION

VEHICLE CAPACITY WEIGHT 460 KG (1010 LBS)
SEATING CAPACITY 5
COLD TIRE PRESSURE FRONT 28 PSI
RECOMMENDED TIRE SIZE 245/45 R17 95H
245/45 R17 95W
FOR ADDITIONAL INFORMATION SEE INSIDE FILLER PIPE COVER AND
OWNER'S MANUAL A 211 584 39 21
Pre-Test Front View of Test Vehicle
Post-Test Front View of Test Vehicle
Pre-Test Left Side View of Test Vehicle
Pre-Test Right Front Three-Quarter View of Test Vehicle
Post-Test Right Front Three-Quarter View of Test Vehicle
Post-Test Left Front Three-Quarter View of Test Vehicle
Pre-Test Right Rear Three-Quarter View of Test Vehicle
Pre-Test Left Rear Three-Quarter View of Test Vehicle
Post-Test Rear View of Test Vehicle
Post-Test Windshield View
Pre-Test Engine Compartment View
Post-Test Engine Compartment View
Pre-Test Fuel Filler Cap View
Post-Test Fuel Filler Cap View
Pre-Test Front Underbody View
Post-Test Front Underbody View
Pre-Test Rear Underbody View
Pre-Test Driver Dummy Front View (head position)
Post-Test Driver Dummy Front View (head position)
Post-Test Driver Dummy Position Left Side View
Pre-Test Driver Dummy Position Left Side View (Door Open)
Pre-Test Driver Dummy Seat Position
Pre-Test Driver Dummy Feet Position
Post-Test Driver Dummy Feet Position
Post-Test Driver Side Knee Bolster View
Post-Test Driver Dummy Head Contact (head rest)
Post-Test Driver Dummy Knee Contact
Post-Test Driver Dummy Airbag Contact
Pre-Test Passenger Dummy Front View (head position)
Post-Test Passenger Dummy Front View (head position)
Pre-Test Passenger Dummy Position Right Side View
Pre-Test Passenger Dummy Position Right Side View (Door Open)
Post-Test Passenger Dummy Seat Position
Pre-Test Passenger Dummy Feet Position
Post-Test Passenger Dummy Feet Position
Pre-Test Passenger Side Knee Bolster View
Post-Test Passenger Dummy Knee Contact
Post-Test Passenger Dummy Airbag Contact
Rollover 90 Degrees
Rollover 180 Degrees
Rollover 270 Degrees
Vehicle in Relation to The Load Cell Grid
APPENDIX D

LOW RISK PHOTOGRAPHS
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo No. 1.</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side View (Door Open)</td>
<td>D-1</td>
</tr>
<tr>
<td>Photo No. 2.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side View (Door Open)</td>
<td>D-2</td>
</tr>
<tr>
<td>Photo No. 3.</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side View (Door Open)</td>
<td>D-3</td>
</tr>
<tr>
<td>Photo No. 4.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side View (Door Open)</td>
<td>D-4</td>
</tr>
<tr>
<td>Photo No. 5.</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side Head Position View</td>
<td>D-5</td>
</tr>
<tr>
<td>Photo No. 6.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side Head Position View</td>
<td>D-6</td>
</tr>
<tr>
<td>Photo No. 7.</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side Head Position View</td>
<td>D-7</td>
</tr>
<tr>
<td>Photo No. 8.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side Head Position View</td>
<td>D-8</td>
</tr>
<tr>
<td>Photo No. 9.</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side Mid Position View</td>
<td>D-9</td>
</tr>
<tr>
<td>Photo No. 10.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side Mid Position View</td>
<td>D-10</td>
</tr>
<tr>
<td>Photo No. 11.</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side Mid Position View</td>
<td>D-11</td>
</tr>
<tr>
<td>Photo No. 12.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side Mid Position View</td>
<td>D-12</td>
</tr>
<tr>
<td>Photo No. 13.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Left View</td>
<td>D-13</td>
</tr>
<tr>
<td>Photo No. 14.</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Right View</td>
<td>D-14</td>
</tr>
<tr>
<td>Photo No. 15.</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Left Side View (Door Open)</td>
<td>D-15</td>
</tr>
<tr>
<td>Photo No. 16.</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Left Side View (Door Open)</td>
<td>D-16</td>
</tr>
<tr>
<td>Photo No. 17.</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Right Side View (Door Open)</td>
<td>D-17</td>
</tr>
<tr>
<td>Photo No. 18.</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Right Side View (Door Open)</td>
<td>D-18</td>
</tr>
<tr>
<td>Photo No. 19.</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Left Side Head Position View</td>
<td>D-19</td>
</tr>
<tr>
<td>Photo No. 20.</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Left Side Head Position View</td>
<td>D-20</td>
</tr>
<tr>
<td>Photo No. 21.</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Right Side Head Position View</td>
<td>D-21</td>
</tr>
<tr>
<td>Photo No. 22.</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Right Side Head Position View</td>
<td>D-22</td>
</tr>
<tr>
<td>Photo No. 23.</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Left Side Mid Position View</td>
<td>D-23</td>
</tr>
<tr>
<td>Photo No. 24.</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Left Side Mid Position View</td>
<td>D-24</td>
</tr>
<tr>
<td>Photo No. 25.</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Right Side Mid Position View</td>
<td>D-25</td>
</tr>
<tr>
<td>Photo No. 26.</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Right Side Mid Position View</td>
<td>D-26</td>
</tr>
<tr>
<td>Photo No. 27.</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Airbag Left View</td>
<td>D-27</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>28</td>
<td>Post-Test 5<sup>th</sup> Fem. P2 Driver Dummy Airbag Right View</td>
<td>D-28</td>
</tr>
<tr>
<td>29</td>
<td>Post-Test 5<sup>th</sup> Fem. P2 Driver Dummy Head Contact View (visor)</td>
<td>D-29</td>
</tr>
<tr>
<td>30</td>
<td>Pre-Test 3YO P1 Passenger Dummy Left Side View (Door Open)</td>
<td>D-30</td>
</tr>
<tr>
<td>31</td>
<td>Post-Test 3YO P1 Passenger Dummy Left Side View (Door Open)</td>
<td>D-31</td>
</tr>
<tr>
<td>32</td>
<td>Pre-Test 3YO P1 Passenger Dummy Right Side View (Door Open)</td>
<td>D-32</td>
</tr>
<tr>
<td>33</td>
<td>Post-Test 3YO P1 Passenger Dummy Right Side View (Door Open)</td>
<td>D-33</td>
</tr>
<tr>
<td>34</td>
<td>Pre-Test 3YO P1 Passenger Dummy Left Three-Quarter Upper View</td>
<td>D-34</td>
</tr>
<tr>
<td>35</td>
<td>Post-Test 3YO P1 Passenger Dummy Left Three-Quarter Upper View</td>
<td>D-35</td>
</tr>
<tr>
<td>36</td>
<td>Pre-Test 3YO P1 Passenger Dummy Right Three-Quarter Upper View</td>
<td>D-36</td>
</tr>
<tr>
<td>37</td>
<td>Post-Test 3YO P1 Passenger Dummy Right Three-Quarter Upper View</td>
<td>D-37</td>
</tr>
<tr>
<td>38</td>
<td>Pre-Test 3YO P1 Passenger Dummy Right Side Mid Position View</td>
<td>D-38</td>
</tr>
<tr>
<td>39</td>
<td>Post-Test 3YO P1 Passenger Dummy Airbag Contact Left View</td>
<td>D-39</td>
</tr>
<tr>
<td>40</td>
<td>Post-Test 3YO P1 Passenger Dummy Airbag Contact Right View</td>
<td>D-40</td>
</tr>
<tr>
<td>41</td>
<td>Pre-Test 3YO P2 Passenger Dummy Right Side View (Door Open)</td>
<td>D-41</td>
</tr>
<tr>
<td>42</td>
<td>Post-Test 3YO P2 Passenger Dummy Right Side View (Door Open)</td>
<td>D-42</td>
</tr>
<tr>
<td>43</td>
<td>Pre-Test 3YO P2 Passenger Dummy Left Side View (Door Open)</td>
<td>D-43</td>
</tr>
<tr>
<td>44</td>
<td>Post-Test 3YO P2 Passenger Dummy Left Side View (Door Open)</td>
<td>D-44</td>
</tr>
<tr>
<td>45</td>
<td>Pre-Test 3YO P2 Passenger Dummy Left Three-Quarter Upper View</td>
<td>D-45</td>
</tr>
<tr>
<td>46</td>
<td>Post-Test 3YO P2 Passenger Dummy Left Three-Quarter Upper View</td>
<td>D-46</td>
</tr>
<tr>
<td>47</td>
<td>Pre-Test 3YO P2 Passenger Dummy Right Three-Quarter Upper View</td>
<td>D-47</td>
</tr>
<tr>
<td>48</td>
<td>Post-Test 3YO P2 Passenger Dummy Right Three-Quarter Upper View</td>
<td>D-48</td>
</tr>
<tr>
<td>49</td>
<td>Pre-Test 3YO P2 Passenger Dummy Right Side Feet Position View</td>
<td>D-49</td>
</tr>
<tr>
<td>50</td>
<td>Post-Test 3YO P1 Passenger Dummy Airbag Contact Left View</td>
<td>D-50</td>
</tr>
<tr>
<td>51</td>
<td>Post-Test 3YO P1 Passenger Dummy Airbag Contact Right View</td>
<td>D-51</td>
</tr>
<tr>
<td>52</td>
<td>Pre-Test 6YO P1 Passenger Dummy Left Side View (Door Open)</td>
<td>D-52</td>
</tr>
<tr>
<td>53</td>
<td>Post-Test 6YO P1 Passenger Dummy Left Side View (Door Open)</td>
<td>D-53</td>
</tr>
<tr>
<td>54</td>
<td>Pre-Test 6YO P1 Passenger Dummy Right Side View (Door Open)</td>
<td>D-54</td>
</tr>
<tr>
<td>55</td>
<td>Post-Test 6YO P1 Passenger Dummy Right Side View (Door Open)</td>
<td>D-55</td>
</tr>
<tr>
<td>56</td>
<td>Pre-Test 6YO P1 Passenger Dummy Left Three-Quarter Upper View</td>
<td>D-56</td>
</tr>
</tbody>
</table>
Photo No. 57. Post-Test 6YO P1 Passenger Dummy Left Three-Quarter Upper View D-57
Photo No. 58. Post-Test 6YO P1 Passenger Dummy Right Three-Quarter Upper View D-58
Photo No. 59. Pre-Test 6YO P1 Passenger Dummy Right Side Mid Position View D-59
Photo No. 60. Post-Test 6YO P1 Passenger Dummy Head Contact View (seat back) D-60
Photo No. 61. Post-Test 6YO P1 Passenger Dummy Airbag Contact Left View D-61
Photo No. 62. Post-Test 6YO P1 Passenger Dummy Airbag Contact Right View D-62
Photo No. 63. Pre-Test 6YO P2 Passenger Dummy Right Side View (Door Open) D-63
Photo No. 64. Post-Test 6YO P2 Passenger Dummy Right Side View (Door Open) D-64
Photo No. 65. Pre-Test 6YO P2 Passenger Dummy Left Side View (Door Open) D-65
Photo No. 66. Post-Test 6YO P2 Passenger Dummy Left Side View (Door Open) D-66
Photo No. 67. Pre-Test 6YO P2 Passenger Dummy Left Three-Quarter Upper View D-67
Photo No. 68. Post-Test 6YO P2 Passenger Dummy Left Three-Quarter Upper View D-68
Photo No. 69. Pre-Test 6YO P2 Passenger Dummy Right Three-Quarter Upper View D-69
Photo No. 70. Post-Test 6YO P2 Passenger Dummy Right Three-Quarter Upper View D-70
Photo No. 71. Post-Test 6YO P2 Passenger Dummy Airbag Contact Left View D-71
Photo No. 72. Post-Test 6YO P2 Passenger Dummy Airbag Contact Right View D-72
Photo No. 73. Passenger Geometric Center (2006 Mercedes E350) D-73
Pre-Test 5th Fem. P1 Driver Dummy Right Side View (Door Open)
Post-Test 5th Fem. P1 Driver Dummy Left Side Head Position View
Pre-Test 5th Fem. P1 Driver Dummy Right Side Head Position View
Pre-Test 5th Fem. P1 Driver Dummy Left Side Mid Position View
Post-Test 5th Fem. P1 Driver Dummy Left Side Mid Position View
Post-Test 5th Fem. P1 Driver Dummy Airbag Right View
Pre-Test 5th Fem. P2 Driver Dummy Left Side View (Door Open)
Post-Test 5th Fem. P2 Driver Dummy Left Side View (Door Open)
Pre-Test 5th Fem. P2 Driver Dummy Right Side View (Door Open)
Post-Test 5th Fem. P2 Driver Dummy Right Side View (Door Open)
Pre-Test 5th Fem. P2 Driver Dummy Left Side Head Position View
Pre-Test 5th Fem. P2 Driver Dummy Right Side Head Position View
Pre-Test 5th Fem. P2 Driver Dummy Left Side Mid Position View
Post-Test 5th Fem. P2 Driver Dummy Left Side Mid Position View
Post-Test 5th Fem. P2 Driver Dummy Right Side Mid Position View
Post-Test 5th Fem. P2 Driver Dummy Airbag Left View
Post-Test 5th Fem. P2 Driver Dummy Head Contact View (visor)
Pre-Test 3YO P1 Passenger Dummy Right Side View (Door Open)
Post-Test 3YO P1 Passenger Dummy Left Three-Quarter Upper View
Pre-Test 3YO P1 Passenger Dummy Right Three-Quarter Upper View
Pre-Test 3YO P1 Passenger Dummy Right Side Mid Position View
Pre-Test 3YO P2 Passenger Dummy Right Side View (Door Open)
Pre-Test 3YO P2 Passenger Dummy Right Side Feet Position View
Pre-Test 6YO P1 Passenger Dummy Left Side View (Door Open)
Post-Test 6YO P1 Passenger Dummy Left Side View (Door Open)
Post-Test 6YO P1 Passenger Dummy Head Contact View (seat back)
Pre-Test 6YO P2 Passenger Dummy Right Side View (Door Open)
Post-Test 6YO P2 Passenger Dummy Right Side View (Door Open)
Post-Test 6YO P2 Passenger Dummy Left Side View (Door Open)
Post-Test 6YO P2 Passenger Dummy Left Three-Quarter Upper View
Post-Test 6YO P2 Passenger Dummy Right Three-Quarter Upper View
The location of the point defined by the intersection of the instrument panel and a line between the volumetric center of the smallest volume that can encompass the folded undeployed air bag and volumetric center of the statically inflated air bag. (S22.4.1.2 & S24.4.1.2)
APPENDIX E
SUPPRESSION PHOTOGRAPHS
Table of Photographs

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cosco Dream Ride Car Bed With Belt, Forward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>2</td>
<td>Cosco Dream Ride Car Bed With Belt, Middle Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>3</td>
<td>Cosco Dream Ride Car Bed With Belt, Rearward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>4</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>5</td>
<td>Britax Handle With Care 191 With Belt, Forward Seat Track, Handle Down</td>
<td>E-2</td>
</tr>
<tr>
<td>6</td>
<td>Britax Handle With Care 191 With Belt, Middle Seat Track, Handle Down</td>
<td>E-2</td>
</tr>
<tr>
<td>7</td>
<td>Britax Handle With Care 191 With Belt, Rearward Seat Track, Handle Down</td>
<td>E-2</td>
</tr>
<tr>
<td>8</td>
<td>Britax Handle With Care 191 Unbelted, Forward Seat Track, Handle Down</td>
<td>E-2</td>
</tr>
<tr>
<td>9</td>
<td>Britax Handle With Care 191 Unbelted, Middle Seat Track, Handle Down</td>
<td>E-3</td>
</tr>
<tr>
<td>10</td>
<td>Britax Handle With Care 191 Unbelted, Rearward Seat Track, Handle Down</td>
<td>E-3</td>
</tr>
<tr>
<td>11</td>
<td>Britax Handle With Care 191 Fwd Facing Unbelted, Forward Seat Track, Handle Down</td>
<td>E-3</td>
</tr>
<tr>
<td>12</td>
<td>Britax Handle With Care 191 Fwd Facing Unbelted, Middle Seat Track, Handle Down</td>
<td>E-3</td>
</tr>
<tr>
<td>13</td>
<td>Britax Handle With Care 191 Fwd Facing Unbelted, Rearward Seat Track, Handle Down</td>
<td>E-4</td>
</tr>
<tr>
<td>14</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
<td>E-4</td>
</tr>
<tr>
<td>15</td>
<td>Evenflo First Choice 204 With Belt, Forward Seat Track, Handle Up</td>
<td>E-5</td>
</tr>
<tr>
<td>16</td>
<td>Evenflo First Choice 204 With Belt, Middle Seat Track, Handle Down</td>
<td>E-5</td>
</tr>
<tr>
<td>17</td>
<td>Evenflo First Choice 204 With Belt, Rearward Seat Track, Handle Down</td>
<td>E-5</td>
</tr>
<tr>
<td>18</td>
<td>Evenflo First Choice 204 Unbelted, Forward Seat Track, Handle Up</td>
<td>E-5</td>
</tr>
<tr>
<td>19</td>
<td>Evenflo First Choice 204 Unbelted, Middle Seat Track, Handle Up</td>
<td>E-5</td>
</tr>
<tr>
<td>20</td>
<td>Evenflo First Choice 204 Unbelted, Rearward Seat Track, Handle Down</td>
<td>E-6</td>
</tr>
<tr>
<td>21</td>
<td>Evenflo First Choice 204 Fwd Facing Unbelted, Forward Seat Track, Handle Up</td>
<td>E-6</td>
</tr>
<tr>
<td>22</td>
<td>Evenflo First Choice 204 Fwd Facing Unbelted, Middle Seat Track, Handle Up</td>
<td>E-6</td>
</tr>
<tr>
<td>23</td>
<td>Evenflo First Choice 204 Fwd Facing Unbelted, Rearward Seat Track, Handle Up</td>
<td>E-7</td>
</tr>
<tr>
<td>24</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
<td>E-7</td>
</tr>
<tr>
<td>25</td>
<td>Graco Infant W/ Base With Belt, Forward Seat Track, Handle Up</td>
<td>E-8</td>
</tr>
<tr>
<td>26</td>
<td>Graco Infant W/ Base With Belt, Middle Seat Track, Handle Up</td>
<td>E-8</td>
</tr>
<tr>
<td>27</td>
<td>Graco Infant W/ Base With Belt, Rearward Seat Track, Handle Up</td>
<td>E-8</td>
</tr>
<tr>
<td>28</td>
<td>Graco Infant W/ Base Unbelted, Forward Seat Track, Handle Up</td>
<td>E-8</td>
</tr>
<tr>
<td>29</td>
<td>Graco Infant W/ Base Unbelted, Middle Seat Track, Handle Up</td>
<td>E-9</td>
</tr>
<tr>
<td>30</td>
<td>Graco Infant W/ Base Unbelted, Rearward Seat Track, Handle Up</td>
<td>E-9</td>
</tr>
<tr>
<td>31</td>
<td>Graco Infant W/ Base Fwd Facing Unbelted, Forward Seat Track, Handle Up</td>
<td>E-9</td>
</tr>
<tr>
<td>32</td>
<td>Graco Infant W/ Base Fwd Facing Unbelted, Middle Seat Track, Handle Up</td>
<td>E-9</td>
</tr>
<tr>
<td>33</td>
<td>Graco Infant W/ Base Fwd Facing Unbelted, Rearward Seat Track, Handle Up</td>
<td>E-10</td>
</tr>
<tr>
<td>34</td>
<td>Graco Infant W/O Base With Belt, Forward Seat Track, Handle Up</td>
<td>E-10</td>
</tr>
<tr>
<td>35</td>
<td>Graco Infant W/O Base With Belt, Middle Seat Track, Handle Up</td>
<td>E-10</td>
</tr>
<tr>
<td>36</td>
<td>Graco Infant W/O Base With Belt, Rearward Seat Track, Handle Down</td>
<td>E-10</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page #</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>37</td>
<td>Graco Infant W/O Base Unbelted, Forward Seat Track, Handle Up</td>
<td>E-11</td>
</tr>
<tr>
<td>38</td>
<td>Graco Infant W/O Base Unbelted, Middle Seat Track, Handle Up</td>
<td>E-11</td>
</tr>
<tr>
<td>39</td>
<td>Graco Infant W/O Base Unbelted, Rearward Seat Track, Handle Down</td>
<td>E-11</td>
</tr>
<tr>
<td>40</td>
<td>Graco Infant W/O Base Fwd Facing Unbelted, Forward Seat Track, Handle Up</td>
<td>E-11</td>
</tr>
<tr>
<td>41</td>
<td>Graco Infant W/O Base Fwd Facing Unbelted, Middle Seat Track, Handle Down</td>
<td>E-12</td>
</tr>
<tr>
<td>42</td>
<td>Graco Infant W/O Base Fwd Facing Unbelted, Rearward Seat Track, Handle Down</td>
<td>E-12</td>
</tr>
<tr>
<td>43</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
<td>E-12</td>
</tr>
<tr>
<td>44</td>
<td>Britax Roundabout 161 Fwd Facing With Belt, Forward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>45</td>
<td>Britax Roundabout 161 Fwd Facing With Belt, Middle Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>46</td>
<td>Britax Roundabout 161 Fwd Facing With Belt, Rearward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>47</td>
<td>Britax Roundabout 161 Fwd Facing Unbelted, Forward Seat Track</td>
<td>E-13</td>
</tr>
<tr>
<td>48</td>
<td>Britax Roundabout 161 Fwd Facing Unbelted, Middle Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>49</td>
<td>Britax Roundabout 161 Fwd Facing Unbelted, Rearward Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>50</td>
<td>Britax Roundabout 161 Rear Facing With Belt, Forward Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>51</td>
<td>Britax Roundabout 161 Rear Facing With Belt, Middle Seat Track</td>
<td>E-14</td>
</tr>
<tr>
<td>52</td>
<td>Britax Roundabout 161 Rear Facing With Belt, Rearward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>53</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Forward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>54</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Middle Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>55</td>
<td>Britax Roundabout 161 Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-15</td>
</tr>
<tr>
<td>56</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
<td>E-16</td>
</tr>
<tr>
<td>57</td>
<td>Century Encore Fwd Facing With Belt, Forward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>58</td>
<td>Century Encore Fwd Facing With Belt, Middle Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>59</td>
<td>Century Encore Fwd Facing With Belt, Rearward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>60</td>
<td>Century Encore Fwd Facing Unbelted, Forward Seat Track</td>
<td>E-17</td>
</tr>
<tr>
<td>61</td>
<td>Century Encore Fwd Facing Unbelted, Middle Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>62</td>
<td>Century Encore Fwd Facing Unbelted, Rearward Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>63</td>
<td>Century Encore Rear Facing With Belt, Forward Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>64</td>
<td>Century Encore Rear Facing With Belt, Middle Seat Track</td>
<td>E-18</td>
</tr>
<tr>
<td>65</td>
<td>Century Encore Rear Facing With Belt, Rearward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>66</td>
<td>Century Encore Rear Facing Unbelted, Forward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>67</td>
<td>Century Encore Rear Facing Unbelted, Middle Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>68</td>
<td>Century Encore Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-19</td>
</tr>
<tr>
<td>69</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
<td>E-20</td>
</tr>
<tr>
<td>70</td>
<td>Evenflo Medallion 254 Fwd Facing With Belt, Forward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>71</td>
<td>Evenflo Medallion 254 Fwd Facing With Belt, Middle Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>72</td>
<td>Evenflo Medallion 254 Fwd Facing With Belt, Rearward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>73</td>
<td>Evenflo Medallion 254 Fwd Facing Unbelted, Forward Seat Track</td>
<td>E-21</td>
</tr>
<tr>
<td>74</td>
<td>Evenflo Medallion 254 Fwd Facing Unbelted, Middle Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>75</td>
<td>Evenflo Medallion 254 Fwd Facing Unbelted, Rearward Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>Photo No.</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Photo No. 76.</td>
<td>Evenflo Medallion 254 Rear Facing With Belt, Forward Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>Photo No. 77.</td>
<td>Evenflo Medallion 254 Rear Facing With Belt, Middle Seat Track</td>
<td>E-22</td>
</tr>
<tr>
<td>Photo No. 78.</td>
<td>Evenflo Medallion 254 Rear Facing With Belt, Rearward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>Photo No. 79.</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Forward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>Photo No. 80.</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Middle Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>Photo No. 81.</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Rearward Seat Track</td>
<td>E-23</td>
</tr>
<tr>
<td>Photo No. 82.</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
<td>E-24</td>
</tr>
</tbody>
</table>
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

Newborn Section A Car Bed

Cosco Dream Ride Car Bed With Belt, Forward Seat Track

Cosco Dream Ride Car Bed With Belt, Middle Seat Track

Cosco Dream Ride Car Bed With Belt, Rearward Seat Track

Unbelted 5th Percentile Female Reactivation, Forward Seat Track
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)
12 Month Old Section B Rear Facing CRS

Britax Handle With Care 191 With Belt, Forward Seat Track, Handle Down

Britax Handle With Care 191 With Belt, Middle Seat Track, Handle Down

Britax Handle With Care 191 With Belt, Rearward Seat Track, Handle Down

Britax Handle With Care 191 Unbelted, Forward Seat Track, Handle Down
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old Section B Rear Facing CRS

Britax Handle With Care 191 Fwd Facing Unbelted, Rearward Seat Track, Handle Down

Unbelted 5th Percentile Female Reactivation, Rearward Seat Track
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old Section C Rear Facing CRS

Evenflo First Choice 204 With Belt, Forward Seat Track, Handle Up

Evenflo First Choice 204 With Belt, Middle Seat Track, Handle Down

Evenflo First Choice 204 With Belt, Rearward Seat Track, Handle Down

Evenflo First Choice 204 Unbelted, Forward Seat Track, Handle Up
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old Section C Rear Facing CRS

- Evenflo First Choice 204 Fwd Facing Unbelted, Rearward Seat Track, Handle Up

- Unbelted 5th Percentile Female Reactivation, Rearward Seat Track
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old

Section B

Rear Facing CRS

Graco Infant W/ Base Fwd Facing Unbelted, Rearward Seat Track, Handle Up

Graco Infant W/O Base With Belt, Forward Seat Track, Handle Up

Graco Infant W/O Base With Belt, Middle Seat Track, Handle Up

Graco Infant W/O Base With Belt, Rearward Seat Track, Handle Down
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)
12 Month Old Rear Facing CRS

Graco Infant W/O Base Unbelted, Forward Seat Track, Handle Up
Graco Infant W/O Base Unbelted, Middle Seat Track, Handle Up
Graco Infant W/O Base Unbelted, Rearward Seat Track, Handle Down
Graco Infant W/O Base Fwd Facing Unbelted, Forward Seat Track, Handle Up
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old Section B Rear Facing CRS

Graco Infant W/O Base Fwd Facing Unbelted, Middle Seat Track, Handle Down

Graco Infant W/O Base Fwd Facing Unbelted, Rearward Seat Track, Handle Down

Unbelted 5th Percentile Female Reactivation, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old Section C Forward Facing Convertible CRS

Britax Roundabout 161 Fwd Facing With Belt, Forward Seat Track

Britax Roundabout 161 Fwd Facing With Belt, Middle Seat Track

Britax Roundabout 161 Fwd Facing With Belt, Rearward Seat Track

Britax Roundabout 161 Fwd Facing Unbelted, Forward Seat Track
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)
12 Month Old Section C Forward Facing Convertible CRS

Britax Roundabout 161 Rear Facing With Belt, Rearward Seat Track
Britax Roundabout 161 Rear Facing Unbelted, Forward Seat Track
Britax Roundabout 161 Rear Facing Unbelted, Middle Seat Track
Britax Roundabout 161 Rear Facing Unbelted, Rearward Seat Track
Unbelted 5th Percentile Female Reactivation, Forward Seat Track
Unbelted 5th Percentile Female Reactivation,
Rearward Seat Track
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old Section C Forward Facing Convertible CRS

Evenflo Medallion 254 Fwd Facing With Belt, Forward Seat Track

Evenflo Medallion 254 Fwd Facing With Belt, Middle Seat Track

Evenflo Medallion 254 Fwd Facing With Belt, Rearward Seat Track

Evenflo Medallion 254 Fwd Facing Unbelted, Forward Seat Track
DOT/NHTSA 208 Suppression Test – 2006 Mercedes E350 (C60503)

12 Month Old Section C Forward Facing Convertible CRS

Evenflo Medallion 254 Rear Facing With Belt, Rearward Seat Track

Evenflo Medallion 254 Rear Facing Unbelted, Forward Seat Track

Evenflo Medallion 254 Rear Facing Unbelted, Middle Seat Track

Evenflo Medallion 254 Rear Facing Unbelted, Rearward Seat Track
Unbelted 5th Percentile Female Reactivation, Middle Seat Track
APPENDIX F

INSTRUMENTATION CALIBRATION
INSTRUMENTS FOR DRIVER DUMMY NO. 505

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Serial No.</th>
<th>Manufacturer</th>
<th>Calibration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>A07-J05</td>
<td>Entran</td>
<td>04/11/06</td>
</tr>
<tr>
<td>Head Y</td>
<td>G22-L04</td>
<td>Entran</td>
<td>04/26/06</td>
</tr>
<tr>
<td>Head Z</td>
<td>J23-M09</td>
<td>Entran</td>
<td>04/26/06</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1021</td>
<td>Denton</td>
<td>04/25/06</td>
</tr>
<tr>
<td>Chest X</td>
<td>J13709</td>
<td>Endevco</td>
<td>05/24/06</td>
</tr>
<tr>
<td>Chest Y</td>
<td>J17709</td>
<td>Endevco</td>
<td>05/24/06</td>
</tr>
<tr>
<td>Chest Z</td>
<td>J13541</td>
<td>Endevco</td>
<td>05/24/06</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>505</td>
<td>Servo</td>
<td>02/08/06</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>84</td>
<td>Denton</td>
<td>07/14/06</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>83</td>
<td>Denton</td>
<td>07/14/06</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR PASSENGER DUMMY NO. 510

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Serial No.</th>
<th>Manufacturer</th>
<th>Calibration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P49471</td>
<td>Endevco</td>
<td>04/04/06</td>
</tr>
<tr>
<td>Head Y</td>
<td>P49480</td>
<td>Endevco</td>
<td>04/04/06</td>
</tr>
<tr>
<td>Head Z</td>
<td>P49468</td>
<td>Endevco</td>
<td>04/04/06</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>650</td>
<td>Denton</td>
<td>04/27/06</td>
</tr>
<tr>
<td>Chest X</td>
<td>J23-M06</td>
<td>Entran</td>
<td>04/04/06</td>
</tr>
<tr>
<td>Chest Y</td>
<td>J23-M07</td>
<td>Entran</td>
<td>04/04/06</td>
</tr>
<tr>
<td>Chest Z</td>
<td>J23-M03</td>
<td>Entran</td>
<td>04/04/06</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>510</td>
<td>Servo</td>
<td>02/08/06</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>1360</td>
<td>Denton</td>
<td>06/08/06</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>1359</td>
<td>Denton</td>
<td>06/08/06</td>
</tr>
<tr>
<td>Instrument</td>
<td>SERIAL NO.</td>
<td>MANUFACTURER</td>
<td>CALIBRATION DATE</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Head X</td>
<td>A29-M05</td>
<td>Entran</td>
<td>09/13/05</td>
</tr>
<tr>
<td>Head Y</td>
<td>P27008</td>
<td>Endevco</td>
<td>09/13/05</td>
</tr>
<tr>
<td>Head Z</td>
<td>A29-F20</td>
<td>Entran</td>
<td>09/13/05</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1673</td>
<td>Denton</td>
<td>01/06/06</td>
</tr>
<tr>
<td>Chest X</td>
<td>A27-Z12</td>
<td>Entran</td>
<td>01/04/06</td>
</tr>
<tr>
<td>Chest Y</td>
<td>L02-Z02</td>
<td>Entran</td>
<td>01/19/06</td>
</tr>
<tr>
<td>Chest Z</td>
<td>AJ8Y6</td>
<td>Endevco</td>
<td>01/18/06</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>081</td>
<td>Servo</td>
<td>11/23/05</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>959</td>
<td>GSE</td>
<td>02/08/06</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>950</td>
<td>GSE</td>
<td>02/08/06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Instrument</th>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P27008</td>
<td>Endevco</td>
<td>02/28/06</td>
</tr>
<tr>
<td>Head Y</td>
<td>A29-F20</td>
<td>Entran</td>
<td>02/28/06</td>
</tr>
<tr>
<td>Head Z</td>
<td>A29-M05</td>
<td>Entran</td>
<td>02/28/06</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1561</td>
<td>Denton</td>
<td>02/28/06</td>
</tr>
<tr>
<td>Chest X</td>
<td>L02-Z43</td>
<td>Entran</td>
<td>01/19/06</td>
</tr>
<tr>
<td>Chest Y</td>
<td>L02-Z42</td>
<td>Entran</td>
<td>01/19/06</td>
</tr>
<tr>
<td>Chest Z</td>
<td>L02-Z45</td>
<td>Entran</td>
<td>01/19/06</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>081</td>
<td>Servo</td>
<td>11/23/05</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>959</td>
<td>GSE</td>
<td>02/08/06</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>950</td>
<td>GSE</td>
<td>02/08/06</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR LOW RISK 6 YEAR OLD PASSENGER DUMMY NO. 155 (P1)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P49450</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P49451</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P49452</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1748</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P49443</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P49445</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P49447</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>155</td>
<td>Servo</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR LOW RISK 6 YEAR OLD PASSENGER DUMMY NO. 155 (P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P49450</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P49451</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P49452</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1021</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P49443</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P49445</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P49447</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>155</td>
<td>Servo</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR LOW RISK 3 YEAR OLD PASSENGER DUMMY NO. 032 (P1)

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Manufacturer</th>
<th>Calibration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>C23-Y15</td>
<td>11/15/05</td>
</tr>
<tr>
<td>Head Y</td>
<td>C24-A01</td>
<td>11/15/05</td>
</tr>
<tr>
<td>Head Z</td>
<td>C24-J01</td>
<td>11/15/05</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>263</td>
<td>Denton 12/21/05</td>
</tr>
<tr>
<td>Chest X</td>
<td>A27-Z05</td>
<td>11/02/05</td>
</tr>
<tr>
<td>Chest Y</td>
<td>B05-J13</td>
<td>11/02/05</td>
</tr>
<tr>
<td>Chest Z</td>
<td>B10-Z22</td>
<td>11/02/05</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>032</td>
<td>Servo 02/07/06</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR LOW RISK 3 YEAR OLD PASSENGER DUMMY NO. 032 (P2)

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Manufacturer</th>
<th>Calibration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>C24-J04</td>
<td>05/31/06</td>
</tr>
<tr>
<td>Head Y</td>
<td>J14-J19</td>
<td>05/31/06</td>
</tr>
<tr>
<td>Head Z</td>
<td>F29-X13</td>
<td>05/31/06</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>233</td>
<td>Denton 05/11/06</td>
</tr>
<tr>
<td>Chest X</td>
<td>G04-Z26</td>
<td>05/31/06</td>
</tr>
<tr>
<td>Chest Y</td>
<td>J14-J20</td>
<td>05/31/06</td>
</tr>
<tr>
<td>Chest Z</td>
<td>G04-Z09</td>
<td>05/31/06</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>032</td>
<td>Servo 02/07/06</td>
</tr>
</tbody>
</table>

VEHICLE INSTRUMENTS

<table>
<thead>
<tr>
<th>Serial No.</th>
<th>Manufacturer</th>
<th>Calibration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Seat Crossmember X</td>
<td>C09-Y09</td>
<td>Entran 03/09/06</td>
</tr>
<tr>
<td>Right Rear Seat Crossmember X</td>
<td>B28-Z13</td>
<td>Entran 03/09/06</td>
</tr>
<tr>
<td>Top of Engine X</td>
<td>H10-M18</td>
<td>Entran 06/21/06</td>
</tr>
<tr>
<td>Bottom of Engine X</td>
<td>J22033</td>
<td>Endevco 04/04/06</td>
</tr>
<tr>
<td>Left Brake Caliper X</td>
<td>AMP95</td>
<td>Endevco 02/28/06</td>
</tr>
<tr>
<td>Right Brake Caliper X</td>
<td>AP042</td>
<td>Endevco 02/21/06</td>
</tr>
<tr>
<td>Instrument Panel X</td>
<td>K20-J06</td>
<td>Entran 02/03/06</td>
</tr>
<tr>
<td>Trunk Z</td>
<td>L02-Z48</td>
<td>Entran 02/02/06</td>
</tr>
</tbody>
</table>
APPENDIX G

NOTICE OF TEST FAILURE
LABORATORY NOTICE OF APPARENT TEST FAILURE TO OVSC

FMVSS NO. 208 TEST DATE: October 3, 2005

LABORATORY: MGA Research Corporation

CONTRACT NO.: DTNH22-03-D-11002 DELV. ORDER NO.: #6

LABORATORY PROJECT ENGINEER’S NAME: Jeff Lewandowski

TEST SPECIMEN DESCRIPTION: 2006 Mercedes E350 Passenger Car

VEHICLE NHTSA NO.: C60503 VIN: WDBUF56J76A841487

MFR: DaimlerChrysler AG Stuttgart

APPARENT TEST FAILURE DESCRIPTION: TP208-13 Data Sheet 5; 4.2: The driver and passenger sun visor air bag warning labels are not permanently affixed to the sun visor. The labels are easily peeled off of the visor.

FMVSS REQUIREMENT, PARAGRAPH S: S4.5.1 (c) Each vehicle shall have a label permanently affixed to either side of the sun visor, at the manufacturer’s option, at each front outboard seating position that is equipped with an inflatable restraint.

NOTIFICATION TO NHTSA (COTR): Charles Case

DATE: 10-9-2005 BY: Jeff Lewandowski

REMARKS: See Attached Photo of Certification Label